1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
skelet666 [1.2K]
3 years ago
10

If the average pitcher is releasing the ball from a height of 1.8 m above the ground, and the pitcher's mound is 0.2 m higher th

an the rest of the baseball field, at what height would the catcher need to hold his glove to catch the pitched ball
Physics
1 answer:
mina [271]3 years ago
8 0

The catcher can catch the ball at a height of 0.96 m from the ground.

The distance between the pitcher's mound and the catcher's box is about 60'6", which translates to 18.44 m. An average pitcher can pitch with speeds ranging from 88 mph to 97 mph, which is from 39.3 m/s to 43.4 m/s.

Assume the pitcher pitches a ball horizontally with a speed of 40 m/s. If the catcher catches the ball in a time t, then the ball travels a horizontal distance x of 18.44 m and at the same time falls through a height y.

The horizontal motion of the ball is uniform motion since no force acts on the ball ( assuming no air resistance) and hence the acceleration of the ball along the horizontal direction is zero.

Therefore,

x=ut

Calculate the time t by substituting 18.44 m for x and 40 m/s for u.

t=\frac{x}{u} \\ =\frac{18.44 m}{40 m/s} \\ =0.461s

The ball is acted upon by the earth's gravitational attraction and hence it accelerates downwards with an acceleration equal to the acceleration due to gravity g.

Since a horizontal projection is assumed, the ball has no component of velocity in the downward direction.

Therefore, for vertical motion, which is an accelerated motion, the distance y, the ball falls in the time t taken by it to reach the catcher's box is given by the equation,

y=\frac{1}{2} gt^2

Substitute 9.8 m/s² for g and 0.461 s for t.

y=\frac{1}{2} gt^2\\ y=\frac{1}{2}(9.8 m/s^2)(0.461s)^2=1.04 m

The pitcher releases the ball at a height of 1.8 m from a mound which is at a height of 0.2 m. Thus, the ball is released at a height of 2.0 m from the ground. It falls through a distance of 1.04 m in the time it takes to reach the catcher.

Therefore, the height at which the catcher needs to keep his glove so as to catch the ball is given by,(2.0 m)-(1.04 m)=0.96 m

The catcher needs to hold his glove at a height of <u>0,96 m from the ground.</u>

You might be interested in
Is it possible to be moving but not be in motion?
GREYUIT [131]

No. Motion is the thing that when you're moving, you're in it.

But it IS possible for one person to say you're moving and another person to say you're not moving, both at the same time, and both of them are correct !

4 0
2 years ago
Read 2 more answers
A block of unknown mass is attached to a spring with a spring constant of 7.00 N/m 2 and undergoes simple harmonic motion with a
KatRina [158]

Answers:

a) 0.80 kg

b) 2.12 s

c) 1.093 m/s^{2}

Explanation:

We have the following data:

k=7 N/m is the spring constant

A=12.5 cm \frac{1 m}{100 cm}=0.125 m is the amplitude of oscillation

V=32 cm/s=0.32 m/s is the velocity of the block when x=\frac{A}{2}=0.0625 m

Now let's begin with the answers:

<h3>a) Mass of the block</h3>

We can solve this by the conservation of energy principle:

U_{o}+K_{o}=U_{f}+K_{f} (1)

Where:

U_{o}=k\frac{A^{2}}{2} is the initial potential energy

K_{o}=0  is the initial kinetic energy

U_{f}=k\frac{x^{2}}{2} is the final potential energy

K_{f}=\frac{1}{2} m V^{2} is the final kinetic energy

Then:

k\frac{A^{2}}{2}=k\frac{x^{2}}{2}+\frac{1}{2} m V^{2} (2)

Isolating m:

m=\frac{k(A^{2}-x^{2})}{V^{2}} (3)

m=\frac{7 N/m((0.125 m)^{2}-(0.0625 m)^{2})}{(0.32 m/s)^{2}} (4)

m=0.80 kg (5)

<h3>b) Period</h3>

The period T is given by:

T=2 \pi \sqrt{\frac{m}{k}} (6)

Substituting (5) in (6):

T=2 \pi \sqrt{\frac{0.80 kg}{7 N/m}} (7)

T=2.12 s (8)

<h3>c) Maximum acceleration</h3>

The maximum acceleration a_{max} is when the force is maximum F_{max}, as well :

F_{max}=m.a_{max}=k.x_{max} (9)

Being x_{max}=A

Hence:

m.a_{max}=kA (10)

Finding a_{max}:

a_{max}=\frac{kA}{m} (11)

a_{max}=\frac{(7 N/m)(0.125 m)}{0.80 kg} (12)

Finally:

a_{max}=1.093 m/s^{2}

5 0
3 years ago
Often called velocity this is the velocity of an object at a particular moment in time
Yuliya22 [10]
Instantaneous speed?
8 0
2 years ago
Use the graph below to answer the following question: if average acceleration is calculated using the equation, “ change in velo
sergiy2304 [10]

Answer:

a=9\ cm/s^2

Explanation:

<u>Average Acceleration </u>

Acceleration is a physical magnitude defined as the change of velocity over time. When we have experimental data, we can compute it by calculating the slope of the line in velocity vs time graph.

Note: <em>We cannot see if the time axis is numbered in increments of 1 second, and we'll assume that. </em>

When t_2=4\ sec, the graph shows a value of v_2=36\ cm/s

When t_1=0\ sec, the object is at rest, v_1=0

We compute the average acceleration as

\displaystyle a=\frac{v_2-v_1}{t_2-t_1}

\displaystyle a=\frac{36\ cm/s-0\ cm/s}{4\ sec-0\ sec}

\displaystyle a=\frac{36\ cm/s}{4\ s}

\boxed{a=9\ cm/s^2}

6 0
2 years ago
If a river current is 8.0 m/s, and a boat is traveling 10.0 m/s upstream, what is the boat’s speed relative to the riverbank?
Norma-Jean [14]
If the boat is i travling at 10 m/s and the river is 8.0 m/s the boats speed is 18.0 m/s

3 0
3 years ago
Read 2 more answers
Other questions:
  • A spring with a mass of 5 Kg has natural length 0.5m. A force of 35.6 N is required to maintain it stretched to a length of 0.5m
    11·1 answer
  • A book weighs 0.5 kilograms on a book shelf that is 2 meters above the ground. What is the potential energy of the book relative
    13·1 answer
  • A way to charge insulators and conductors (the answer in 7 alphabets)
    11·1 answer
  • A young lady can paddle a canoe in a lake 7.7 m/s. She paddles downstream in a river whose current is 12.4 m/s. What is the comb
    10·1 answer
  • A bullet 2cm log is fired at 420m/s and passes straight a 10cm thick board exiting at 280m/s
    8·2 answers
  • A wooden block is let go from a height of 5.80 m. What is the velocity of the block just before it hits the ground?
    10·1 answer
  • A 15 g ball at the end of 2.4 m string is swung in the horizontal circle. It revolves once every 2.09 s. What is the magnitude o
    7·1 answer
  • A projectile is fored vertically upward with an initial velocity of 190 m/s. Find the maximum height of the projectile.​
    7·1 answer
  • Which action is not an example of work?
    12·1 answer
  • Which of the following iS an example of a falsifiable hypothesis that could lead to scientific knowledge?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!