The energy of a light wave is calculated using the formula
E = hc/λ
h is the Planck's constant
c is the speed of light
λ is the wavelength
For the ir-c, the range is
<span>6.63 x 10^-34 (3x10^8) / 3000 = 6.63 x 10 ^-29 J
</span>6.63 x 10^-34 (3x10^8) / 1000000 = 1.99 x 10^-31 J
For the ir-a, the range is
6.63 x 10^-34 (3x10^8) / 700 = 2.84 x 10^-28 J
6.63 x 10^-34 (3x10^8) / 1400 = 1.42 x 10^-28 J
Answer:
$893
Explanation: the complete question should be
The clothes washer in your house consumes 470 kWh of energy per year. Price of the washer is $360 and the lifetime of the washer is 10 yrs. Energy price in your city is 9 cents per kWh. What is the lifecycle cost of the clothes washer? (assume a maintenance cost of $11 per year)
SOLUTION
Given:
The clothes washe power consumption (PC) is 470 kWh
Price of the washer (P) is $360
lifetime of the washer (L) is 10 yrs
Energy price in the city (E) is 9 cents per kWh (Covert to $ by dividing 100)
maintenance cost (M) is $11 per year
Lifecycle cost = P + (PC × L × E) +M + L
Lifecycle cost = $360 + (470kWh × 10years × 9cents/100) + ($11 × 10years)
=$893
Answer:
(a) 2.33 A
(b) 15.075 V
Explanation:
From the question,
The total resistance (Rt) = R1+R2 = 3.85+6.47
R(t) = 10.32 ohms.
Applying ohm's law,
V = IR(t)..........equation 1
Where V = Emf of the battery, I = current flowing through the circuit, R(t) = combined resistance of both resistors.
Note: Since both resistors are connected in series, the current flowing through them is the same.
Therefore,
I = V/R(t)............. Equation 2
Given: V = 24 V, R(t) = 10.32 ohms
Substitute these values into equation 2
I = 24/10.32
I = 2.33 A.
Hence the current through R1 = 2.33 A.
V2 = IR2.............. Equation 3
V2 = 2.33(6.47)
V2 = 15.075 V
Answer:
the answer is 5k in the bottle have