The initial kinetic energy of the cart is

(1)
where m is the mass of the cart and v its initial velocity.
Then, the cart hits the spring compressing it. The maximum compression occurs when the cart stops, and at that point the kinetic energy of the cart is zero, so all its initial kinetic energy has been converted into elastic potential energy of the spring:

where k is the spring constant and x is the spring compression.
For energy conservation, K=U. We can calculate U first: the compression of the spring is x=60 cm=0.60 m, while the spring constant is k=250 N/m, so

So, the initial kinetic energy of the cart is also 45 J, and from (1) we can find the value of the initial velocity:
The answer should be B. Fault.
Igneous rocks are formed from solidification and cooling of magma. The magma can be obtanied from partial melts of pre-existing rocks in either the planet's mantle or crust. Plutonic or intrusive rocks area result of when the magma cools and crystallizes slowly within the Earth's crust. A example is granite.
Answer:
The the angle between the axis of polarization of the light and the transmission axis of the analyzer is 52⁰.
Explanation:
Given;
I₀ as incident light intensity
The intensity of a linearly polarized light passing through a polarizer is given by Malus' law:
I = I₀Cos²θ
where;
I is the intensity after passing through the analyzer
θ is the the angle between the axis of polarization of the light and the transmission axis of the analyzer.
If 38% of the total intensity is transmitted, then I = 38% of I₀ = 0.38I₀
0.38I₀ = I₀Cos²θ
0.38 = Cos²θ
Cosθ = √0.38
Cosθ = 0.6164
θ = Cos⁻¹ (0.6164)
θ = 51.95° = 52⁰
Therefore, the angle between the axis of polarization of the light and the transmission axis of the analyzer to allow 38% of the total intensity to be transmitted is 52⁰.