Answer:
(a) the work done by the student is 110.1 J
(b) The gravitational force that acts on the amplifier is 102.9 N
Explanation:
Given;
mass of the amplifier, m = 10.5 kg
initial position of the amplifier, x₀ = 1.82 m
final position of the amplifier, x₁ =0.75 m
The dispalcement of the amplifier Δx = x₁ - x₀ = 1.82 m - 0.75 m = 1.07 m
(b) The gravitational force that acts on the amplifier;
F = mg
F = 10.5 x 9.8
F = 102.9 N
(a) the work done by the student is calculated as;
W = FΔx
W = 102.9 x 1.07
W = 110.1 J
<span>15 m/s^2
The first thing to calculate is the difference between the final and initial velocities. So
180 m/s - 120 m/s = 60 m/s
So the plane changed velocity by a total of 60 m/s. Now divide that change in velocity by the amount of time taken to cause that change in velocity, giving
60 m/s / 4.0 s = 15.0 m/s^2
Since you only have 2 significaant figures, round the result to 2 significant figures giving 15 m/s^2</span>
Answer:
6093.2328 J
Explanation:
For cylindrical rod moment of inertia will be


we have given time =0.02 sec
Angular speed =
Rotational KE = 
The correct answer is:
<span>C: in the protons and neutrons of an atom
In fact, the nuclear energy refers to the binding energy of the nucleons (protons and neutrons) of an atom. The protons and the neutrons are held together by the strong nuclear interaction, one of the four fundamental forces of nature, and the energy associated to this interaction is called nuclear energy.
</span>