Answer:
Part a)

Part b)



Part c)



Explanation:
Part a)
As we know that charge density is the ratio of total charge and total volume
So here the volume of the charge ball is given as



now the charge density of the ball is given as

Part b)
Now the charge enclosed by the surface is given as

at radius of 5 cm


at radius of 10 cm


at radius of 20 cm

Part c)
As we know that electric field is given as

so we have electric field at r = 5 cm


electric field at r = 10 cm


electric field at r = 20 cm


The sound wave would behave differently in a swimming pool than in his bedroom because sound waves travel faster in more dense mediums; such as water. The wave will travel faster in water, and slower in air.
When the object is at the top of the hill it has the most potential energy. If it is sitting still, it has no kinetic energy. As the object begins to roll down the hill, it loses potential energy, but gains kinetic energy. The potential energy of the position of the object at the top of the hill is getting converted into kinetic energy. Hope this helped. :)
Answer:
a. 16 s b. -1.866 kJ
Explanation:
a. Since the initial rotational speed ω₀= 3313 rev/min = 3313/60 × 2π rad/s = 346.94 rad/s. Its rotational speed becomes ω₁ = 0.75ω₀ in time t = 4 s.
We find it rotational acceleration using α = (ω₁ - ω₀)/t = (0.75ω₀ - ω₀)/t = ω₀(0.75 - 1)/t = -0.25ω₀/t = (-0.25 × 346.94 rad/s)/4 s = -21.68 rad/s².
Since the turntable stops at ω = 0, the time it takes to stop is gotten from
ω = ω₀ + αt and t = (ω - ω₀)/α = (0 - 346.94 rad/s)/-21.68 rad/s² = (-346.94/-21.68) s = 16 s.
So it takes the turntable 16 s to stop.
b. The workdone by the turntable to stop W equals its rotational kinetic energy change.
So, W = 1/2Iω² - 1/2Iω₀² = 1/2 × 0.031 kgm² × 0² - 1/2 × 0.031 kgm² × (346.94 rad/s)² = 0 - 1865.7 J = -1865.7 J = -1.8657 kJ ≅ -1.866 kJ