Answer:
D)
Step-by-step explanation:
![Area \: of \: rectangle \\ = length \times width \\ = 3(x + 2) \times (5x - 8) \\ = (3x + 6) \times (5x - 8) \\ = 3x(5x - 8) + 6(5x - 8) \\ = 15 {x}^{2} - 24x + 30x - 48 \\ = 15 {x}^{2} + 6x - 48](https://tex.z-dn.net/?f=Area%20%5C%3A%20%20of%20%20%5C%3A%20rectangle%20%20%5C%5C%20%20%3D%20length%20%5Ctimes%20width%20%5C%5C%20%20%3D%203%28x%20%2B%202%29%20%5Ctimes%20%285x%20-%208%29%20%5C%5C%20%20%3D%20%283x%20%2B%206%29%20%5Ctimes%20%285x%20-%208%29%20%5C%5C%20%20%3D%203x%285x%20-%208%29%20%2B%206%285x%20-%208%29%20%5C%5C%20%20%3D%2015%20%7Bx%7D%5E%7B2%7D%20%20-%2024x%20%2B%2030x%20-%2048%20%5C%5C%20%20%3D%2015%20%7Bx%7D%5E%7B2%7D%20%20%2B%206x%20-%2048)
For this case we must find the value of n of the following equation:
![n + \frac {1} {5} n = 24](https://tex.z-dn.net/?f=n%20%2B%20%5Cfrac%20%7B1%7D%20%7B5%7D%20n%20%3D%2024)
Taking common factor "n" from the left side of the equation we have:
![n (1+ \frac {1} {5}) = 24\\n \frac {6} {5} = 24](https://tex.z-dn.net/?f=n%20%281%2B%20%5Cfrac%20%7B1%7D%20%7B5%7D%29%20%3D%2024%5C%5Cn%20%5Cfrac%20%7B6%7D%20%7B5%7D%20%3D%2024)
Multiplying by 5 on both sides of the equation:
![6n = 120](https://tex.z-dn.net/?f=6n%20%3D%20120)
Dividing between 6 on both sides of the equation:
![n = 20](https://tex.z-dn.net/?f=n%20%3D%2020)
Thus, the value of n is 20.
Answer:
![n = 20](https://tex.z-dn.net/?f=n%20%3D%2020)
Answer:
6
Step-by-step explanation:
root the 216 as it is a cube
:edge *edge *edge =volume
Since all edges are the same, just root it
The answer is If you would like to find the expression that is equivalent to (t*s)(x), you can calculate this using the following steps:
s(x) = x - 7
t(x) = 4x^2 - x + 3
(t*s)(x) = t(s(x)) = t(x - 7) = <span>4(x - 7)^2 - (x - 7) + 3 = 4(x - 7)^2 - x + 7 + 3
The correct result would be </span>4(x – 7)2 – (x – 7) + 3.
Answer:
C. 17, 12, 7
Step-by-step explanation:
In a triangle, the sum of the lengths of any two sides must be greater then the length of the third side. If you can show any two segments, the sum of whose lengths is less than the length of the third segment, that cannot form a triangle.
In choices A, B, and D, there is at least one sum of the lengths of two segments that is less then the length of the third segment. That shows that choices A, B, and D cannot form triangles.
A. 8 + 7 = 15 < 16 No
B. 9 + 7 = 16 = 16 No
D. 11 + 5 = 16 < 17 No
C.
17 + 12 = 29 > 7
12 + 7 = 19 > 17
17 + 7 = 24 > 12
Yes