The horizontal component of the velocity of the shot is 35 cos 40 ft/sec which is constant
Therefore:-
Velocity = distance / time
35 cos 40 = 40 / t
t = = 40 / 35cos40 = 1.49 seconds to nearest hundredth
Draw the bar above the 6 and make it go up to 300 :)
Answer:
-5 ÷ 4 = -1.25 or 1 
The answer is -1.25
I hope that this helps you! ^‿^
The sector (shaded segment + triangle) makes up 1/3 of the circle (which is evident from the fact that the labeled arc measures 120° and a full circle measures 360°). The circle has radius 96 cm, so its total area is π (96 cm)² = 9216π cm². The area of the sector is then 1/3 • 9216π cm² = 3072π cm².
The triangle is isosceles since two of its legs coincide with the radius of the circle, and the angle between these sides measures 120°, same as the arc it subtends. If b is the length of the third side in the triangle, then by the law of cosines
b² = 2 • (96 cm)² - 2 (96 cm)² cos(120°) ⇒ b = 96√3 cm
Call b the base of this triangle.
The vertex angle is 120°, so the other two angles have measure θ such that
120° + 2θ = 180°
since the interior angles of any triangle sum to 180°. Solve for θ :
2θ = 60°
θ = 30°
Draw an altitude for the triangle that connects the vertex to the base. This cuts the triangle into two smaller right triangles. Let h be the height of all these triangles. Using some trig, we find
tan(30°) = h / (b/2) ⇒ h = 48 cm
Then the area of the triangle is
1/2 bh = 1/2 • (96√3 cm) • (48 cm) = 2304√3 cm²
and the area of the shaded segment is the difference between the area of the sector and the area of the triangle:
3072π cm² - 2304√3 cm² ≈ 5660.3 cm²
Answer:
17.1≤x≤23.1
Step-by-step explanation:
The formula for calculating the confidence interval is expressed as;
CI = x ± z*s/√n
x is the mean yield = 20.1
z is the 80% z-score = 1.282
s is the standard deviation = 7.66
n is the sample size = 11
Substitute
CI = 20.1 ± 1.282*7.66/√11
CI = 20.1 ± 1.282*7.66/3.3166
CI = 20.1 ± 1.282*2.3095
CI = 20.1 ±2.9609
CI = (20.1-2.9609, 20.1+2.9609)
CI = (17.139, 23.0609)
hence the required confidence interval to 1dp is 17.1≤x≤23.1