Given below the arrangement of loading on the larger boat by two tug boats.
F₁ = 5 N
F₂ = 4 N
Angle between them θ = 90⁰
Resultant between two vectors, 
Substituting

So magnitude of the net force on the block = 6.403 N
By what i know i think that the answer would be A a homogeneous mixture.
Answer:
C
Explanation:
Because this same question was on my test last week and I got it correct
Answer:
accelerate in the direction in which the electric field is pointing.
Explanation:
The positive charge feels a force in the same direction as the electric field
F=Eq
F and E are vectors, q is a scalar
(if it were a negative charge the force would be in the opposite direction)
that force will produce an acceleration in the same direction, that acceleration will cause the particle to move in the same direction, ie the direction of the electric field.
Answer:
ΔΦ = -3.39*10^-6
Explanation:
Given:-
- The given magnetic field strength B = 0.50 gauss
- The angle between earth magnetic field and garage floor ∅ = 20 °
- The loop is rotated by 90 degree.
- The radius of the coil r = 19 cm
Find:
calculate the change in the magnetic flux δφb, in wb, through one of the loops of the coil during the rotation.
Solution:
- The change on flux ΔΦ occurs due to change in angle θ of earth's magnetic field B and the normal to circular coil.
- The strength of magnetic field B and the are of the loop A remains constant. So we have:
Φ = B*A*cos(θ)
ΔΦ = B*A*( cos(θ_1) - cos(θ_2) )
- The initial angle θ_1 between the normal to the coil and B was:
θ_1 = 90° - ∅
θ_1 = 90° - 20° = 70°
The angle θ_2 after rotation between the normal to the coil and B was:
θ_2 = ∅
θ_2 = 20°
- Hence, the change in flux can be calculated:
ΔΦ = 0.5*10^-4*π*0.19*( cos(70) - cos(20) )
ΔΦ = -3.39*10^-6