Answer:
143 kW
Explanation:
Given that
Diameter of the beam, d = 1 mm
Wavelength of the beam, λ = 193 nm
Time used by the pulse, t = 14 ns
Energy of the pulse, U = 2 mJ
Recall that Power can be mathematically calculated using the relation,
Power = Work Done / Time,
To solve this, we apply the formula
P = U / Δt
P = 2*10^-3 J / 14*10^-9 s
P = 142857 W
P = 143 kW
<span>The relationship between wavelength, frequency and energy of Electromagnetic Radiation is given by
E = hf = hc/lamba -------(1)
So from (1) there's a linear relationship between E and f. The higher the frequency, f, the higher the energy E.
Also from (1) it is obvious that the lower the wavelength, lambda, the higher the energy, E.
This means the answer is D.</span>
Answer:
single replacement
Explanation:
In the question it says one element replaces another element which means there is only one replacement.
Answer:
G = 6,786 10⁻¹¹ m³ / s² kg
Explanation:
The law of universal gravitation is
F = G m M/ r²
Where G is the gravitational constant, m and M are the masses of the bodies and r is the distance from their centers
Let's use Newton's second law
F = m a
The acceleration is centripetal
a =
We replace
G m M / r² = m
G =
r² / M
Let's replace and calculate
G = 2.7 10⁻³ (3.88 10⁸)² / 5.99 10²⁴
G = 6,786 10⁻¹¹ m³ / s² kg
Let's perform a dimensional analysis
[N m²/kg²] = [kg m/s² m² / kg²] = [m³ / s² kg]
What’s the question so that i can help you