Answer:
Step-by-step explanation:
Assuming a normal distribution for the distribution of the points scored by students in the exam, the formula for normal distribution is expressed as
z = (x - u)/s
Where
x = points scored by students
u = mean score
s = standard deviation
From the information given,
u = 70 points
s = 10.
We want to find the probability of students scored between 40 points and 100 points. It is expressed as
P(40 lesser than x lesser than or equal to 100)
For x = 40,
z = (40 - 70)/10 =-3.0
Looking at the normal distribution table, the corresponding z score is 0.0135
For x = 100,
z = (100 - 70)/10 =3.0
Looking at the normal distribution table, the corresponding z score is 0.99865
P(40 lesser than x lesser than or equal to 100) = 0.99865 - 0.0135 = 0.98515
The percentage of students scored between 40 points and 100 points will be 0.986 × 100 = 98.4%
We solve the inequality by subtracting 56.50 from both sides of the equation,
10.45b + 56.50 - 56.50 < 292.67 - 56.50
10.45b < 236.17
Then, divide both sides of the inequality by 10.45
b < 22.6
The solution suggests that the number of boxes than can be loaded on a truck without exceeding the weight limit of the truck should always be lesser than 22.6. Since we are talking about number of boxes, the maximum number of boxes that can be loaded should only be 22.
Answer:
It would be 24
Step-by-step explanation:
6: 6, 12, 18, 24
8: 8, 16, 24
The least common number is 24, so she should make at least 24.
A.) 135 miles in 3 hours = 45 miles per hr
B.) 22 miles in 1 hour= 22 miles per hr
C.) 7.5 miles in 1/4 hour = 30 miles per hr
D.) 100/3 in 2/3 hour = About 49.9 mph
E.) 97.5 in 1.5 hours = 65 miles per hr