Answer:
Explanation:
The acceleration of an object is the rate of change of velocity of the object.
Mathematically, it is calculated as:
where
u is the initial velocity
v is the final velocity
t is the time taken for the velocity to change from u to v
Acceleration is a vector, so it is important to also take into account the direction of the velocity.
For the particle in this problem, we have:
u = +48 m/s is the initial velocity (positive direction)
v = -92 m/s is the final velocity (negative direction)
t = 4.5 s is the time interval
Therefore, the average acceleration is
Answer:
Landed before it explodes
Explanation:
vf = vi + at,
0 = 145 - (9.8)t,
t = 14.79 s (Time to reach highest point)
14.79 x 2 = 29.59 s (Time to land on the ground)
It will have landed before it explodes because both the time to reach the highest point and the time to land on the ground are less than 32 seconds.
Complete question :
NASA is concerned about the ability of a future lunar outpost to store the supplies necessary to support the astronauts the supply storage area of the lunar outpost where gravity is 1.63m/s/s can only support 1 x 10 over 5 N. What is the maximum WEIGHT of supplies, as measured on EARTH, NASA should plan on sending to the lunar outpost?
Answer:
601000 N
Explanation:
Given that :
Acceleration due to gravity at lunar outpost = 1.6m/s²
Supported Weight of supplies = 1 * 10^5 N
Acceleration due to gravity on the earth surface = 9.8m/s²
Maximum weight of supplies as measured on EARTH :
Ratio of earth gravity to lunar post gravity:
(Earth gravity / Lunar post gravity) ;
(9.8 / 1.63) = 6.01
Hence, maximum weight of supplies as measured on EARTH should be :
6.01 * (1 × 10^5)
6.01 × 10^5
= 601000 N
The use of drugs to treat disease is called medication
Answer: The correct answers are (A) and (C).
Explanation:
The expression from electrostatic force is as follows;
Here, F is the electrostatic force, k is constant, r is the distance between the charges and are the charges.
The electrostatic force follows inverse square law. It is inversely proportional to the square of the distance between the charges. It is directly proportional to the product of the charges.
Like charges repel each other. There is a force of electrostatic repulsion between the like charges. Unlike charges attract each other. There is a force of electrostatic attraction between unlike charges.
The charges are induced on the neutral object when it is placed nearby the charged object without actually touching it.
Therefore, the true statements from the given options are as follows;
Like charges repel.
Unlike charges attract.