Answer:

Explanation:
First, we calculate the work done by this force after the box traveled 14 m, which is given by:
![W=\int\limits^{x_f}_{x_0} {F(x)} \, dx \\W=\int\limits^{14}_{0} ({18N-0.530\frac{N}{m}x}) \, dx\\W=[(18N)x-(0.530\frac{N}{m})\frac{x^2}{2}]^{14}_{0}\\W=(18N)14m-(0.530\frac{N}{m})\frac{(14m)^2}{2}-(18N)0+(0.530\frac{N}{m})\frac{0^2}{2}\\W=252N\cdot m-52N\cdot m\\W=200N\cdot m](https://tex.z-dn.net/?f=W%3D%5Cint%5Climits%5E%7Bx_f%7D_%7Bx_0%7D%20%7BF%28x%29%7D%20%5C%2C%20dx%20%5C%5CW%3D%5Cint%5Climits%5E%7B14%7D_%7B0%7D%20%28%7B18N-0.530%5Cfrac%7BN%7D%7Bm%7Dx%7D%29%20%5C%2C%20dx%5C%5CW%3D%5B%2818N%29x-%280.530%5Cfrac%7BN%7D%7Bm%7D%29%5Cfrac%7Bx%5E2%7D%7B2%7D%5D%5E%7B14%7D_%7B0%7D%5C%5CW%3D%2818N%2914m-%280.530%5Cfrac%7BN%7D%7Bm%7D%29%5Cfrac%7B%2814m%29%5E2%7D%7B2%7D-%2818N%290%2B%280.530%5Cfrac%7BN%7D%7Bm%7D%29%5Cfrac%7B0%5E2%7D%7B2%7D%5C%5CW%3D252N%5Ccdot%20m-52N%5Ccdot%20m%5C%5CW%3D200N%5Ccdot%20m)
Since we have a frictionless surface, according to the the work–energy principle, the work done by all forces acting on a particle equals the change in the kinetic energy of the particle, that is:

The box is initially at rest, so
. Solving for
:

Explanation:
Crust...molten
a. Oceanic, iron
b. Continental, silicates
c. less
3. Mantle, Denser
a. Lithosphere
b. Asthenosphere
4. Core
a. elements, rocks
b. liquid, magnetic
(I guess the liquid should come after the is)
Couldn't answer all but wanted to help
Answer:
Explanation:
The diagram has a fairly simple explanation. In the top diagram, the space between the particle is increasing. That means that acceleration is increasing. The bottom diagram shows just the opposite. The particle starts off making large "distances" between where the particle is recorded and then the distances between recordings lessens and the particle is slowing down.
Rule: the greater the "distance" between dot positions, the greater the acceleration, because the speed is large.
Top diagram: increasing distance between dots = larger speed. The distance becomes greater as the particle moves to the right.
Bottom diagram: starts off large and decreases as we move from left to right = - acceleration.
Microwave<span> ovens are so quick and efficient because they channel </span>heat<span> energy directly to the molecules (tiny particles) inside </span>food<span>. </span>Microwaves heat food<span> like the sun heats your face—by radiation. A </span>microwave<span> is much like the electromagnetic waves that zap through the air from TV and radio transmitters</span>