Answer:
2.5 × 10² ppm
Explanation:
Step 1: Given data
- Mass of the sample: 200. g
Step 2: Convert 0.050 g to μg
We will use the conversion factor 1 g = 10⁶ μg.
0.050 g × 10⁶ μg/1 g = 5.0 × 10⁴ μg
Step 3: Calculate the concentration of NaCl in ppm
The concentration of NaCl in ppm is equal to the micrograms of NaCl per gram of the sample.
5.0 × 10⁴ μg NaCl/200. g = 2.5 × 10² ppm
Answer:
If you see in the image above, there is an unbalance force applied while playing tug of war. Since it is 1 vs 2, there is a greater net force in the right side then the left side. If it was 2 vs 2 or 1 vs 1, then they are appling balance force. You can also see in the picture that the arrows are pointing outwards (--->) rather then inwards (<---) because you are pulling the rope not pushing the rope. If you add one person on the left side, then the newtons which is 20N will become to 35N and will be balanced, but since there in only 1 person, there is less force on the left side, the newtons gets subtracted having only 20N. Since you are pulling the rope, the friction is opposite (<---). Since you are pulling the rope, you are using Kinetic force and the rope stays in potential force since it stays constant.
Hope this helps, thank you :) and I am not sure about magnitude I think you can that since there is greater force on the right side, there is more magnitude there.
Answer:
The copper, because its specific heat is higher, meaning it takes more heat (Joules) per gram to raise the temperature 1 degree Celsius.
Explanation:
Don't take my word for it but I think it is
1: proteins
2: energy from the sun, carbon dioxide, and water
3: this one is confusing me but I think it would be nutrients from food and oxygen
4: water
Again these are attempts I can't prove these
“Models are developed when a scientist’s creativity and insight are combined with data and observations about many similar scenarios”. Models are used for a lot of things in science. As we know everything has advantages and disadvantages, and the same applies to models. Models help us illustrate the concept and formulate hypothesis. When models are used, the scientists are able to notice patterns and develop and revise representation that become a useful model, which makes their scientific knowledge stronger and helps them understand more about the nature of science. Models are a simplified representation. One of the biggest advantages of the model is, that it allows you to have a look at things which are too small such as atoms or too big such as the solar system.
Although, having many benefits, models have quite a number of disadvantages. Models sometimes oversimplify the process therefore leading to a misunderstanding. As models are supposed to be a simplified representation, they will not be complex, which means they will lack detail. For Example “our particle model explains many things about matter, it is not comprehensive — for example, it cannot predict why certain materials have different electrical properties. We could add further refinements that are outside the scope of this course to enable it to do so, but it would make our model so complicated that it would no longer be useful to us”