y = 0m
y0 = 166m
v0y = 0 m/s
g = 9.8 m/s^2
t = ?
Solve for t:
y = y0 + v0y*t - (0.5)gt^2
0 = 166 - (0.5)(9.8)t^2
t = 5.82 s
Now, using time, we can solve for the range using the equation:
x = vx(t)
x = (40)(5.82)
x = 232.8 m
The impact horizontal component of velocity will be 40 m/s as velocity in terms of x is always constant. To find the impact vertical component of velocity, we use the equation:
v = v0y - gt
v = 0 - (9.8)(5.82)
v = -57.04 m/s
Answer:
Final speed of car = 12 m/s
Explanation:
We have equation of motion v = u + at, where v is final velocity, u is initial velocity, a is acceleration and t is time.
a) A cart starts from rest and accelerates at 4.0 m/s² for 5.0 s
v = ?
u = 0 m/s
a = 4.0 m/s²
t = 5 s
v = u + at = 0 + 4 x 5 = 20 m/s
b) Then maintains that velocity for 10 s
v = ?
u = 20 m/s
a = 0 m/s²
t = 10 s
v = u + at = 20 + 0 x 10 = 20 m/s
c) Then decelerates at the rate of 2.0 m/s² for 4.0 s
v = ?
u = 20 m/s
a = -2.0 m/s²
t = 4 s
v = u + at = 20 + -2 x 4 = 12 m/s
Final speed of car = 12 m/s
Hey there!
The answer is that The data was not reliable because there was not any repetition.
An experiment should be completed multiple times to be sure of accurate results.
A screenshot is attached.
Hope this helps! :)
An impulsive force is a force that is acting only during a short time, I mean, for an instant. Impulse is a physics magnitude define by the product of the impulsive force and the time that it was acting.
Is there any mistake in my English? Please, let me know.