The answer is true because the invention ofthe beto
Position: x = 18t y = 4t - 4.9t²
First derivative: x' = 18 y' = 4 - 9.8t
Second derivative: x'' = 0 y'' = - 9.8
Position vector: P = (18t) i + (4t - 4.9t²) j
Velocity vector: V = (18) i + (4 - 9.8t) j
Acceleration vector A = (- 9.8) j
Answer:
Sledgehammer A has more momentum
Explanation:
Given:
Mass of Sledgehammer A = 3 Kg
Swing speed = 1.5 m/s
Mass of Sledgehammer B = 4 Kg
Swing speed = 0.9 m/s
Find:
More momentum
Computation:
Momentum = mv
Momentum sledgehammer A = 3 x 1.5
Momentum sledgehammer A = 4.5 kg⋅m/s
Momentum sledgehammer B = 4 x 0.9
Momentum sledgehammer B = 3.6 kg⋅m/s
Sledgehammer A has more momentum
Answer:
a) 4.9*10^-6
b) 5.71*10^-15
Explanation:
Given
current, I = 3.8*10^-10A
Diameter, D = 2.5mm
n = 8.49*10^28
The equation for current density and speed drift is
J = I/A = (ne) Vd
A = πD²/4
A = π*0.0025²/4
A = π*6.25*10^-6/4
A = 4.9*10^-6
Now,
J = I/A
J = 3.8*10^-10/4.9*10^-6
J = 7.76*10^-5
Electron drift speed is
J = (ne) Vd
Vd = J/(ne)
Vd = 7.76*10^-5/(8.49*10^28)*(1.60*10^-19)
Vd = 7.76*10^-5/1.3584*10^10
Vd = 5.71*10^-15
Therefore, the current density and speed drift are 4.9*10^-6
And 5.71*10^-15 respectively