1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
user100 [1]
3 years ago
6

Which event is an example of vaporization?

Physics
1 answer:
Nonamiya [84]3 years ago
3 0

Answer:

B

Explanation:

You might be interested in
Ethylene glycol, the primary ingredient in antifreeze, has the chemical formula C2H6O2. The radiator fluid used in most cars is
disa [49]

Answer:

-30 °C

Explanation:

First, we have to calculate the molality (m) of the solution. If the solution is 50% C₂H₆O₂ by mass. It means that in 100 g of solution, the are 50 g of solute (C₂H₆O₂) and 50 g of solvent (water).

The molar mass of C₂H₆O₂ is 62.07 g/mol. The moles of solute are:

50 g × (1 mol / 62.07 g) = 0.81 mol

The mass of the solvent is 50 g = 0.050 kg.

The molality is:

m = 0.81 mol / 0.050 kg = 16 m

The freezing-point depression (ΔT) can be calculated using the following expression.

ΔT = Kf × m = (1.86 °C/m) × 16 m = 30 °C

where,

Kf: freezing-point constant

The normal freezing point for water is 0°C. The freezing point of the radiator fluid is:

0°C - 30°C = -30 °C

8 0
2 years ago
What type of bond results from the side‑on overlap of orbitals?
Serga [27]

Answer:

A pi bond

Explanation:

A pi bond is a type of covalent bond that results from the formation of a molecular orbital by the side-to-side overlap of atomic orbitals along a plane perpendicular to a line connecting the nuclei of the atoms.

4 0
3 years ago
Olaf is standing on a sheet of ice that covers the football stadium parking lot in Buffalo, New York; there is negligible fricti
Bas_tet [7]

Answer:

v = 0.059 m/s

Explanation:

To find the final speed of Olaf and the ball you use the conservation momentum law. The momentum of Olaf and the ball before catches the ball is the same of the momentum of Olaf and the ball after. Then, you have:

mv_{1i}+Mv_{2i}=(m+M)v  (1)

m: mass of the ball = 0.400kg

M: mass of Olaf = 75.0 kg

v1i: initial velocity of the ball = 11.3m/s

v2i: initial velocity of Olaf = 0m/s

v: final velocity of Olaf and the ball

You solve the equation (1) for v and replace the values of all variables:

v=\frac{mv_{1i}}{m+M}=\frac{(0.400kg)(11.3m/s)}{0.400kg+75.0kg}=0.059\frac{m}{s}

Hence, after Olaf catches the ball, the velocity of Olaf and the ball is 0.059m/s

3 0
2 years ago
Graph the following data tables on different graphs.
Anna [14]

Answer:

Sjjsjsjsjsjsjsjwjwjw

8 0
2 years ago
Ety ratio
horrorfan [7]

3) The work done is D. zero

4) The kinetic energy is B. 180 J

5) The potential energy is A. 120 J

6) The work done depends on B. position

7) The example of non-renewable energy is C. coal

8) The power expended is 3\cdot 10^4 W

9) The efficiency is A. 100%

10) The velocity ratio is 5

Explanation:

3)

The work done by a force acting an object is given by:

W=Fd cos \theta

where :

F is the magnitude of the force

d is the displacement

\theta is the angle between the direction of the force and the displacement

When the force is applied perpendicular to the direction of motion,

\theta=90^{\circ}

Therefore, the work done is:

W=Fd(cos 90^{\circ})=0

4)

The kinetic energy of a body is given by

K=\frac{1}{2}mv^2

where

m is the mass of the body

v is its speed

For the girl in this problem, we have

m = 40 kg

v = 3 m/s

Therefore her kinetic energy is

K=\frac{1}{2}(40)(3)^2=180 J

5)

The potential energy of an object is given by

PE=mgh

where

m is the mass

g=10 m/s^2 is the acceleration of gravity

h is the heigth of the object relative to the ground

For the ball in this problem,

m = 0.4 kg

h = 30 m

So, the potential energy is

PE=(0.4)(10)(30)=120 J

6)

A conservative field is a field for which the work done by the field on an object does not depend on the path taken, but only on the initial and final position of the object.

Gravitational and electric fields are examples of conservative fields. In fact:

  • When an object is pulled down by gravity (free fall), the work done by the gravitational field only depends on the change in height \Delta h between the two points, not on the path taken during the fall
  • When an electric charge is pushed by the electric field, the work done by the field depends only on the initial and final position of the charge in the field

For any conservative field, it is possible to define a "potential" function, which represents the energy per unit mass/charge, and depends only on the position of the object.

7.

  • Non-renewable energy sources are sources of energy whose rate of consumption is faster than the rate at which they are re-created. Examples of non-renewable sources are coal, oil, natural gas. These energy sources are consumed at a fast rate, while they take million of years to regenerate, so at the current rate they will eventually run out.
  • Renewable energy sources are sources of energy that replenish at faster rate than the rate at which it is consumed. Examples of renewable sources are solar energy, wind, hydroelectric power.

Therefore, the example of non-renewable energy in this case is

C. Coal

8.

For an object pushed by a force F and moving at a constant velocity v, the power expended is given by

P=Fv

where F is the force and v is the velocity.

for the rocket in this problem, we have:

F = 10 N is the force propelling the rocket

v = 3000 m/s is its velocity

Substituting into the equation, we find the power expended:

P=(10)(3000)=30,000 W = 3\cdot 10^4 W

9.

The efficiency of a machine is given by

\eta = \frac{W_{out}}{W_{in}}

where

W_{in} is the energy in input to the machine

W_{out} is the useful work in output from the machine

For a real machine, the useful work in output is always lower than the energy input, because part of the energy is "wasted" and converted into thermal energy due to the presence of internal frictions. However, for an ideal machine, all the input energy is converted into useful work, so

W_{out}=W_{in}

And therefore the efficiency is

\eta=1

which means 100%.

10.

The velocity ratio of a block and tackle system is the ratio between the distance moved by the effort and the distance moved by the load.

VR=\frac{d_{eff}}{d_{load}}

In a block and tackle system, the velocity ratio is also equal to the number of pulleys in the system.

For the system in the problem, there are 5 pulleys: therefore, this means that when the effort moves 5 metres, the load moves 1 metres, therefore the velocity ratio is

VR=\frac{5}{1}=5

Learn more about kinetic and potential energy:

brainly.com/question/6536722

brainly.com/question/1198647

brainly.com/question/10770261

#LearnwithBrainly

5 0
3 years ago
Other questions:
  • A vector has an x component of -27.5 units and a y component of 43.0 units. find the magnitude and direction of this vector.
    11·1 answer
  • The voltage across a membrane forming a cell wall is 72.7 mV and the membrane is 9.22 nm thick. What is the magnitude of the ele
    5·1 answer
  • What happens if an opaque object is placed in the path of light?
    15·2 answers
  • Trying out for the big leagues, you throw a 149 gram baseball at a speed of 85.0 miles per hour. What is the ball's kinetic ener
    12·1 answer
  • How are force, mass and acceleration related?
    15·1 answer
  • A race car starts from rest on a circular track of radius 310 m. Its speed increases at the constant rate of 0.6 m/s 2 . At the
    11·1 answer
  • 1. A ball is thrown vertically upward.
    11·1 answer
  • State the law of conversation of momentum​
    13·1 answer
  • Below is a physics question
    13·1 answer
  • Potential energy is the energy an object has due to its:
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!