A needle valve and collar.
Answer:
making sure that you change one factor at a time while keeping all other conditions the same
Explanation:
Answer:
Explanation:
given,
tuning fork vibration = 508 Hz
accelerates = 9.80 m/s²
speed of sound = 343 m/s
observed frequency = 490 Hz


![v_s = v[\dfrac{f_s}{f_o}-1]](https://tex.z-dn.net/?f=v_s%20%3D%20v%5B%5Cdfrac%7Bf_s%7D%7Bf_o%7D-1%5D)
![= 343[\dfrac{508}{490}-1]](https://tex.z-dn.net/?f=%3D%20343%5B%5Cdfrac%7B508%7D%7B490%7D-1%5D)

distance the tunning fork has fallen


=8.1 m
now, time required for the observed will be

now, for the distance calculation


=0.293 m
total distance
= 8.1 + 0.293 = 8.392 m
Answer:
Average force = 3.5 kN
Explanation:
Given:
Mass of Jennifer (m) = 50 kg
Initial velocity = 35 m/s
Time taken to stop body = 0.5 s
Find:
Average force
Computation:
v = u + at
0 = 35 + a(0.5)
Acceleration (a) = - 70 m/s² = 70 m/s²
Average force = ma
Average force = (50(70)
Average force = 3500 N
Average force = 3.5 kN
Answer:If you look at the image of the toy car in the mirror, it will appear to be the same ... However, there is a virtual focal point on the other side of the mirror if we follow them ... Concave mirrors, on the other hand, can have real images. ... Naturally, in concave mirror, the closer the image to the mirror, the bigger the image formed.