1) 1.08 m/s^2
Explanation:
Acceleration is equal to the change in velocity divided by the time taken:

where
v is the final velocity
u is the initial velocity
is the time taken
In this problem, we have:
- initial velocity: u = 0 (you start from rest)
- final velocity: v = 5.4 m/s
- time taken: 
Therefore, the acceleration is

2) -0.54 m/s^2
We can calculate the acceleration to slow down using the same formula as before, but this time the data are as follows:
- initial velocity : u = 5.4 m/s
- final velocity : v = 0 (you come to a stop)
- time taken : 
using the same formula, we find

And the negative sign means it is a deceleration.
Answer:
The work done on the box is 80 J.
Explanation:
Given that,
Weight of box = 40 N
Distance = 2 meter
We need to calculate the work done
Using formula of work done


Where, x = distance
mg = weight
Put the value into the formula



Hence, The work done on the box is 80 J.
Answer:
1)
The total work done by outside force is 
2)
The total work done by the electric field is 
3)
The potential energy of the two sphere system is 
4)
The magnitude of the acceleration of sphere A is 
5)
The magnitude of the acceleration of sphere B is 
6)
The magnitude of velocity sphere A after a very long time is
\
7) The magnitude of velocity sphere B after a very long time is 
Explanation:
The explanation is shown on the first and second uploaded image
Answer:
Magnetic field, 
Explanation:
It is given that,
Number of turns, N = 320
Radius of the coil, r = 6 cm = 0.06 m
The distance from the center of one coil to the electron beam is 3 cm, x = 3 cm = 0.03 m
Current flowing through the coils, I = 0.5 A
We need to find the magnitude of the magnetic field at a location on the axis of the coils, midway between the coils. The magnetic field midway between the coils is given by :


B = 0.00239 T
or

So, the magnitude of the magnetic field at a location on the axis of the coils, midway between the coils is
. Hence, this is the required solution.