Answer:
102 kg.m/s
Explanation:
m = Mass of hammer = 12 kg
v = Final velocity = 8.5 m/s
u = Initial velocity = 0
t = Time taken = 8 ms
Force acting over a given amount of time or change in momentum is known as impulse.
Impulse

Impulse given to the nail is 102 kg.m/s
Answer:
Hi sorry for answering here but you didnt put the options there
Explanation:
I'll still try to answer though so maybe the mixture from one of the questions might be something like oil and water which don't mix and can be separated by decantation so something similar would work. Hope this helps
Answer:
F=248.5W N
Explanation:
Newton's 2nd Law tells us that F=ma. We will use their averages always. The average acceleration the tennis ball experimented is, by definition:

Since we start counting at 0s and the ball departs from rest, this is just 
So we can write:

Where in the last step we have just multiplied and divided by g, the acceleration of gravity. This allows us to introduce the weight of the ball W since W=gm, so we have:

Substituting our values:

Where the average force exerted has been written it terms of the tennis ball's weight W.
In collision that are categorized as elastic, the total kinetic energy of the system is preserved such that,
KE1 = KE2
The kinetic energy of the system before the collision is solved below.
KE1 = (0.5)(25)(20)² + (0.5)(10g)(15)²
KE1 = 6125 g cm²/s²
This value should also be equal to KE2, which can be calculated using the conditions after the collision.
KE2 = 6125 g cm²/s² = (0.5)(10)(22.1)² + (0.5)(25)(x²)
The value of x from the equation is 17.16 cm/s.
Hence, the answer is 17.16 cm/s.
Solution:
54 / 9 = 6 boxes.