Answer:
Average velocity v = 21.18 m/s
Average acceleration a = 2 m/s^2
Explanation:
Average speed equals the total distance travelled divided by the total time taken.
Average speed v = ∆x/∆t = (x2-x1)/(t2-t1)
Average acceleration equals the change in velocity divided by change in time.
Average acceleration a = ∆v/∆t = (v2-v1)/(t2-t1)
Where;
v1 and v2 are velocities at time t1 and t2 respectively.
And x1 and x2 are positions at time t1 and t2 respectively.
Given;
t1 = 3.0s
t2 = 20.0s
v1 = 11 m/s
v2 = 45 m/s
x1 = 25 m
x2 = 385 m
Substituting the values;
Average speed v = ∆x/∆t = (x2-x1)/(t2-t1)
v = (385-25)/(20-3)
v = 21.18 m/s
Average acceleration a = ∆v/∆t = (v2-v1)/(t2-t1)
a = (45-11)/(20-3)
a = 2 m/s^2
Answer:
270 μA
Explanation:
Use the magnetic field due to long, straight wire and solve for current I.


plug in the values

= 2.7×10^{-4)×10^6
=270 μA
The current that flows in the heart is 270 μA
Well, to be honest, there is no official way to find out which volcano erupted recently as scientists don't have that type of equipment ready or in use at all; also there is no official way [...] because there are always eruptions occurring.
If you want the most known, "Calbuco" is your answer. It erupted in 2014 and it is found in Chile.
Answer:
The magnetic field is
Explanation:
From the question we are told that
The mass of the metal rod is 
The current on the rod is 
The distance of separation(equivalent to length of the rod ) is 
The coefficient of kinetic friction is 
The kinetic frictional force is 
The constant speed is 
Generally the magnetic force on the rod is mathematically represented as

For the rod to move with a constant velocity the magnetic force must be equal to the kinetic frictional force so

=> 
=> 
=> 