Based on internet sources, <span>the basic formulas are: v^2/r = (at)^2/r = a ==> at^2 = r ==> t = sqrt(r/a).
</span>
<span>Assuming the missing units are mutually compatible, as in the following example, they don't need to be known. </span>
<span>Acceleration = 1.6 cramwells/s^2 </span>
<span>Radius = 150 cramwells </span>
<span>t = sqrt(150/1.6) = 9.68 s.
I hope this helps.</span>
<span>Resilience is the amount of energy that can be put into a volume of material and still be stored elastically. ie When the energy goes away, the material regains its undeformed shape. The Mod of R is the amount that can be stored by a unit volume of that material. The Mod of R is heavily related to Youngs Modulus.</span>
Answer:
C. Overcome Friction
Explanation:
When using any machine usually those with moving parts, you may notice heat forming near the areas where most movement occurs. As friction continues, more energy is used up and released as heat. For that reason, the efficiency of a machine will forever be less than 100%
Use a=(dv/dt) (change in velocity/ change in time)=acceleration
(1.2/5)=acceleration
F=ma (Newton's second law, Force= Mass x Acceleration
=960 x 0.24 F=230.4N If T<230.4N then the tow rope will hold
Answer:
Torque = 35.60 N.m (rounded off to 3 significant figures.
Explanation:
Given details:
The mass of the rock on the left, ms = 2.25 kg
The total mass of the rocks, mp = 10.1 kg
The distance from the fulcrum to the center of the pile of rocks, rp = 0.360 m
(a) The torque produced by the pile of rock, T = F*rp = m*g*rp
Torque = 9.8*0.360*10.1 = 35.6328
Torque = 35.60 N.m (rounded off to 3 significant figures).