Answer:
The acid-base reaction produces glycine reduction, and hence the increase of glycine pH.
Explanation:
The glycine is an amino acid with the following chemical formula:
NH₂CH₂COOH
The COOH functional group is what gives the acid properties in the molecule.
Hence, when NaOH is added to glycine an acid-base reaction takes place in which COOH reacts with the NaOH added:
NH₂CH₂COOH + OH⁻ ⇄ NH₂CH₂COO⁻ + H₂O
The glycine concentration starts to shift to its ion form (NH₂CH₂COO⁻) because of the reaction with NaOH, that is why the pH glycine increases when NaOH is added.
Therefore, the acid-base reaction produces glycine reduction, and hence the increase of glycine pH.
I hope it helps you!
Answer:
1.15 atm
Explanation:
According to Dalton's law of partial pressures, the total pressure is the sum of all the partial pressures of the gases present in the mixture.
Therefore we have:
Total pressure = partial pressure of carbon monoxide + partial pressure of oxygen + partial pressure of carbon dioxide
We were given the following:
Total pressure = 2.45 atm
Pressure of oxygen = 0.65 atm
Pressure of carbon monoxide = x
Pressure of carbon dioxide = 0.65 atm
Therefore:
2.45 = x + 0.65 + 0.65
2.45 = x + 1.3
x = 2.45 - 1.3
x = 1.15 atm
On point? Do you have any options?
Answer:
a-Interatomic bonds
Explanation:
First of all, it is not a force. Let alone be molecular force.
<u>Answer:</u> The volume of barium chlorate is 195.65 mL
<u>Explanation:</u>
To calculate the volume of solution, we use the equation used to calculate the molarity of solution:

Given mass of barium chlorate = 25.0 g
Molar mass of barium chlorate = 304.23 g/mol
Molarity of solution = 0.420 mol/L
Volume of solution = ?
Putting values in above equation, we get:

Hence, the volume of barium chlorate is 195.65 mL