Answer:
Explanation:
a )
While breaking initial velocity u = 62.5 mph
= 62.5 x 1760 x 3 / (60 x 60 ) ft /s
= 91.66 ft / s
distance trvelled s = 150 ft
v² = u² - 2as
0 = 91.66² - 2 a x 150
a = - 28 ft / s²
b ) While accelerating initial velocity u = 0
distance travelled s = .24 mi
time = 19.3 s
s = ut + 1/2 at²
s is distance travelled in time t with acceleration a ,
.24 = 0 + 1/2 a x 19.3²
a = .001288 mi/s²
= 2.06 m /s²
c )
If distance travelled s = .25 mi
final velocity v = ? a = .001288 mi / s²
v² = u² + 2as
= 0 + 2 x .001288 x .25
= .000644
v = .025 mi / s
= .0025 x 60 x 60 mi / h
= 91.35 mph .
d ) initial velocity u = 59 mph
= 86.53 ft / s
final velocity = 0
acceleration = - 28 ft /s²
v = u - at
0 = 86.53 - 28 t
t = 3 sec approx .
Answer: W = 11340J
Explanation:
Hey there! I will give the following steps, if you have any questions feel free to ask me in the comments below.
So this is the Formula: Power = Work / Time.
<u>Step 1:</u><em><u> Find the Formula</u></em>
P = W / T
<em><u>
</u></em>
<u>Step 2: </u><u><em>Make W the subject of the equation.</em></u>
W = PT
<u>Step 3:</u><u> </u><u><em>Given.</em></u>
P = 270 Watts, T = 42 seconds
<u>Step 4:</u><u><em> Substitute these values into equation 2
.</em></u>
W = 270(42)
<u>Step 5:</u><u> </u><u><em>Simplify.</em></u>
W = 11340J
The amount of work done was 11340.
~I hope I helped you! :)~
Electrical current will flow through a solid by the means of
electrons. The electrons in the solid
must be able to move from lower to higher electrical potential. The electric
current in certain solid electrolytes like ice is entirely composed of flowing
ions.
Answer:0.43
Explanation:
Given
mass of car 
Speed of car 
Distance traveled before coming to halt 
Let
the coefficient of friction
Maximum deceleration road can provide during motion is

using 


