Newton's three laws of motion can be used to describe the motion of the ice skating.
<h3>Newton's first law of motion</h3>
Newton's first law of motion states that an object at rest or uniform motion in a straight line will continue in that state unless it is acted upon by an external force.
- Based on this law, once the ice skating starts, it will continue endlessly unless external force stops it.
<h3>Newton's second law of motion</h3>
Newton's second law of motion states that the force applied to an object is directly proportional to the product of mass and acceleration of an object.
- Based on this law, the force applied to the ice skating is equal to the product of mass and acceleration of the ice skating.
<h3>Newton's third law of motion</h3>
This law states that action and reaction are equal and opposite.
- Based on this law, the force applied to the ice skating is equal in magnitude to the reaction of ice.
Learn more about Newton's law here: brainly.com/question/3999427
Answer:
Fd
Explanation:
Work is force times distance. If you push on an object really hard but it does not budge, you have still performed no work on it, because anything times zero is still zero.
Answer:
This is because the 11 positive protons and 10 negative electrons end up with an overall charge of +1.
Explanation:
The strength of the gravitational forces between two masses depends on
-- the product of the masses,
-- the distance between their centers of mass.
Answer:
1) The human skeleton performs six major functions: support, movement, protection, production of blood cells, storage of minerals, and endocrine regulation. protection of internal organs
2) Joints are where two bones meet. They make the skeleton flexible — without them, movement would be impossible. Joints allow our bodies to move in many ways.
3)A joint is a point where two or more bones meet. There are three main types of joints; Fibrous (immovable), Cartilaginous (partially moveable) and the Synovial (freely moveable) joint
4)A ligament is a fibrous connective tissue which attaches bone to bone, and usually serves to hold structures together and keep them stable.
Explanation:
go-gle your welcome ;)