1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
meriva
3 years ago
15

Extrusive rocks forms beneath earth's surface true or false

Physics
1 answer:
Verizon [17]3 years ago
8 0
The answer is false your welcome
You might be interested in
A 0.50-kg mass attached to the end of a string swings in a vertical circle (radius 2.0 m). When the mass is at the highest point
il63 [147K]

Answer:

31.1 N

Explanation:

m = mass attached to string = 0.50 kg

r = radius of the vertical circle = 2.0 m

v = speed of the mass at the highest point = 12 m/s

T = force of the string on the mass attached.

At the highest point, force equation is given as

T + mg =\frac{mv^{2}}{r}

Inserting the values

T + (0.50)(9.8) =\frac{(0.50)(12)^{2}}{2}

T = 31.1 N

7 0
2 years ago
Read 2 more answers
Light does not pass through some materials. What do you think happens
Hatshy [7]

Answer:

When an electron is hit by a photon of light, it absorbs the quanta of energy the photon was carrying and moves to a higher energy state. One way of thinking about this higher energy state is to imagine that the electron is now moving faster, (it has just been "hit" by a rapidly moving photon)

A photon is a quantum of EM radiation. Its energy is given by E = hf and is related to the frequency f and wavelength λ of the radiation by. E=hf=hcλ(energy of a photon) E = h f = h c λ (energy of a photon) , where E is the energy of a single photon and c is the speed of light.

7 0
1 year ago
Proved that<br>V = u+at<br>​
kondaur [170]

Answer:

\sf Proof \ below

Explanation:

We know that acceleration is change in velocity over time.

\sf a=\frac{\triangle v}{t}

\sf a=\frac{v-u}{t}

v is the final velocity and u is the initial velocity.

Solve for v.

Multiply both sides by t.

\sf at=v-u

Add u to both sides.

\sf at + u=v

3 0
3 years ago
Read 2 more answers
The machine which turns in a power station​
Anna [14]

Answer:

generators

Explanation:

the machine which turns in a power station

4 0
2 years ago
A closely wound, circular coil with a diameter of 4.30 cm has 470 turns and carries a current of 0.460 A .
Nadusha1986 [10]

Hi there!

a)
Let's use Biot-Savart's law to derive an expression for the magnetic field produced by ONE loop.

dB = \frac{\mu_0}{4\pi} \frac{id\vec{l} \times \hat{r}}{r^2}

dB = Differential Magnetic field element

μ₀ = Permeability of free space (4π × 10⁻⁷ Tm/A)

R = radius of loop (2.15 cm = 0.0215 m)

i = Current in loop (0.460 A)

For a circular coil, the radius vector and the differential length vector are ALWAYS perpendicular. So, for their cross-product, since sin(90) = 1, we can disregard it.

dB = \frac{\mu_0}{4\pi} \frac{id\vec{l}}{r^2}

Now, let's write the integral, replacing 'dl' with 'ds' for an arc length:
B = \int \frac{\mu_0}{4\pi} \frac{ids}{R^2}

Taking out constants from the integral:
B =\frac{\mu_0 i}{4\pi R^2}  \int ds

Since we are integrating around an entire circle, we are integrating from 0 to 2π.

B =\frac{\mu_0 i}{4\pi R^2}  \int\limits^{2\pi R}_0 \, ds

Evaluate:
B =\frac{\mu_0 i}{4\pi R^2}  (2\pi R- 0) = \frac{\mu_0 i}{2R}

Plugging in our givens to solve for the magnetic field strength of one loop:

B = \frac{(4\pi *10^{-7}) (0.460)}{2(0.0215)} = 1.3443 \mu T

Multiply by the number of loops to find the total magnetic field:
B_T = N B = 0.00631 = \boxed{6.318 mT}

b)

Now, we have an additional component of the magnetic field. Let's use Biot-Savart's Law again:
dB = \frac{\mu_0}{4\pi} \frac{id\vec{l} \times \hat{r}}{r^2}

In this case, we cannot disregard the cross-product. Using the angle between the differential length and radius vector 'θ' (in the diagram), we can represent the cross-product as cosθ. However, this would make integrating difficult. Using a right triangle, we can use the angle formed at the top 'φ', and represent this as sinφ.  

dB = \frac{\mu_0}{4\pi} \frac{id\vec{l} sin\theta}{r^2}

Using the diagram, if 'z' is the point's height from the center:

r = \sqrt{z^2 + R^2 }\\\\sin\phi = \frac{R}{\sqrt{z^2 + R^2}}

Substituting this into our expression:
dB = \frac{\mu_0}{4\pi} \frac{id\vec{l}}{(\sqrt{z^2 + R^2})^2} }(\frac{R}{\sqrt{z^2 + R^2}})\\\\dB = \frac{\mu_0}{4\pi} \frac{iRd\vec{l}}{(z^2 + R^2)^\frac{3}{2}} }

Now, the only thing that isn't constant is the differential length (replace with ds). We will integrate along the entire circle again:
B = \frac{\mu_0 iR}{4\pi (z^2 + R^2)^\frac{3}{2}}} \int\limits^{2\pi R}_0, ds

Evaluate:
B = \frac{\mu_0 iR}{4\pi (z^2 + R^2)^\frac{3}{2}}} (2\pi R)\\\\B = \frac{\mu_0 iR^2}{2 (z^2 + R^2)^\frac{3}{2}}}

Multiplying by the number of loops:
B_T= \frac{\mu_0 N iR^2}{2 (z^2 + R^2)^\frac{3}{2}}}

Plug in the given values:
B_T= \frac{(4\pi *10^{-7}) (470) (0.460)(0.0215)^2}{2 ((0.095)^2 + (0.0215)^2)^\frac{3}{2}}} \\\\ =  0.00006795 = \boxed{67.952 \mu T}

5 0
1 year ago
Read 2 more answers
Other questions:
  • What element is produced when the isotope bismuth-213 emits a beta particle
    9·1 answer
  • Which resonance form is likely to contribute most to the correct structure of n2o?
    14·1 answer
  • How does a blue object look under all colors of light
    11·1 answer
  • What is the speed of a car in meters per second when it is moving at 100km/h?
    13·1 answer
  • How do objects and substances in motion have kinetic energy
    11·1 answer
  • What minerals can Fluorite scratch?
    13·1 answer
  • What will happen if a car experiences a 300 N force to the right from the engine and a separate 150 N force due to friction and
    7·1 answer
  • Why do you think lightning is so dangerous if it strikes a person?
    8·1 answer
  • 1000 cm + 114 m + 12 km + 160 mm =
    11·1 answer
  • The amplitude of wave is
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!