This problem is better understood with a given figure. Assuming
that the flight is in a perfect northwest direction such that the angle is 45°,
therefore I believe I have the correct figure to simulate the situation (see
attached).
Now we are asked to find for the value of the hypotenuse
(flight speed) given the angle and the side opposite to the angle. In this
case, we use the sin function:
sin θ = opposite side / hypotenuse
sin 45 = 68 miles per hr / flight
flight = 68 miles per hr / sin 45
<span>flight = 96.17 miles per hr</span>
Hi!! Okay thanks! And yes I think that’s correct.
Neither train a or train b
14:35 is a ratio, and of-coarse, as we know, we can transform that into another way of writing a ratio:
14/35
Simplify
14/7 = 2
35/7 = 5
2:5
Answer: 2 to 5
10. After all the Pythagorean theorem the answer is 51.7215 cm