B) The amount of work done
Answer:
the value of the final pressure is 0.168 atm
Explanation:
Given the data in the question;
Let p₁ be initial pressure, v₁ be initial volume.
After expansion, p₂ is final pressure and v₂ is final volume.
So using the following equations;
p₁v₁ = nRT
p₂v₂ = nRT
hence, p₁v₁ = p₂v₂
we find p₂
p₂ = p₁v₁ / v₂
given that; initial volume v₁ = 0.175 m³, Initial pressure p₁ = 0.350 atm,
final volume v₂ = 0.365 m³
we substitute
p₂ = ( 0.350 atm × 0.175 m³ ) / 0.365 m³
p₂ = 0.06125 atm-m³ / 0.365 m³
p₂ = 0.168 atm
Therefore, the value of the final pressure is 0.168 atm
a) The kinetic energy (KE) of an object is expressed as the product of half of the mass (m) of the object and the square of its velocity (v²):

It is given:
v = 8.5 m/s
m = 91 kg
So:

b) We can calculate height by using the formula for potential energy (PE):
PE = m*g*h
In this case, h is eight, and PE is the same as KE:
PE = KE = 3,287.4 J
m = 91 kg
g = 9.81 m/s² - gravitational acceleration
h = ? - height
Now, let's replace those:
3,287.4= 91 * 9.81 * h
⇒ h = 3,287.4/(91*9.81) = 3,287.4/892.7 = 3.7 m
Answer:
option (b) 4900 N
Explanation:
m = 2000 kg, R = 6380 km = 6380 x 10^3 m, Me = 5.98 x 10^24 kg, h = R
F = G Me x m / (R + h)^2
F = G Me x m / 2R^2
F = 6.67 x 10^-11 x 5.98 x 10^24 x 2000 / (2 x 6380 x 10^3)^2
F = 4900 N
A quadrilateral with only one pair of parallel sides.
<span>a small carpal bone in the base of the hand, articulating with the metacarpal of the index finger.
</span>