As weight =w =mg
g= gravitational acceleration on mercury = 3.7m/sec2
Mass of person =m= 70 kg
So w =(70kg)(3.7m/sec2)
w= 259 kgm/sec2
W= 259 N
Answer:
d. the same within the uncertainty of each measurement method
Explanation:
The density of an object and in general any physical property, has the same value regardless of the method used to measure it, either directly or indirectly. Since two completely different valid methods are used, the results must be the same, taking into account the level of precision of each of the methods.
Answer:

Explanation:
The centripetal force acting on the car must be equal to mv²/R, where m is the mass of the car, v its speed and R the radius of the curve. Since the only force acting on the car that is in the direction of the center of the circle is the frictional force, we have by the Newton's Second Law:

But we know that:

And the normal force is given by the sum of the forces in the vertical direction:

Finally, we have:

So, the minimum value for the coefficient of friction is 0.27.
Answer:
The magnitude of each force is 2.45 x 10⁻¹⁶ N
Explanation:
The charge of proton, +q = 1.603 x 10⁻¹⁹ C
The charge of electron, -q = 1.603 x 10⁻¹⁹ C
Distance between the two charges, r = 971 nm = 971 x 10⁻⁹ m
Apply Coulomb's law;

where;
k is Coulomb's constant = 8.99 x 10⁹ Nm²/C²
q₁ and q₂ are the charges of proton and electron respectively
F is the magnitude of force between them
Substitute in the given values and solve for F

Therefore, the magnitude of each force is 2.45 x 10⁻¹⁶ N
Answer:
300 is the answer
Explanation:
Hope that this answer will help you