Explanation:
<h2>Radium(Ra)=> </h2>
atomic number=88
<h2>BERYLLIUM (Be)=></h2>
atomic number =4
why is Ra larger than Be
<h3>1. since the atomic number of Ra is greater than Be, the number of electrons is more, which means there are more number of shells present in Ra than Be. </h3><h2>(atomic Radius)</h2>
<h2>2. the more the valence electron (excluding fully filled ones) the less is the nuclear attraction force</h2><h3>since Ra has more valence electron in its outermost shell, the nuclear attraction force is less which means that Ra 's size is greater than Be.</h3>
hope it helps:)
Answer:
Higher melting and boiling points signify stronger noncovalent intermolecular forces. Consider the boiling points of increasingly larger hydrocarbons. More carbons means a greater surface area possible for hydrophobic interaction, and thus higher boiling points.
Answer: Economic geography takes a variety of approaches to many different topics, including the location of industries, economies of agglomeration (also known as "linkages"), transportation, international trade, development, real estate, gentrification, ethnic economies, gendered economies, core-periphery theory, the economics of urban form, the relationship between the environment and the economy (tying into a long history of geographers studying culture-environment interaction), and globalization.
<u>Answer:</u> The Gibbs free energy of the reaction is 21.32 kJ/mol
<u>Explanation:</u>
The chemical equation follows:

The equation used to Gibbs free energy of the reaction follows:

where,
= free energy of the reaction
= standard Gibbs free energy = 29.7 kJ/mol = 29700 J/mol (Conversion factor: 1 kJ = 1000 J)
R = Gas constant = 8.314J/K mol
T = Temperature = ![37^oC=[273+37]K=310K](https://tex.z-dn.net/?f=37%5EoC%3D%5B273%2B37%5DK%3D310K)
= Ratio of concentration of products and reactants = ![\frac{\text{[Oxaloacetate]}[NADH]}{\text{[Malate]}[NAD^+]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Ctext%7B%5BOxaloacetate%5D%7D%5BNADH%5D%7D%7B%5Ctext%7B%5BMalate%5D%7D%5BNAD%5E%2B%5D%7D)
![\text{[Oxaloacetate]}=0.130mM](https://tex.z-dn.net/?f=%5Ctext%7B%5BOxaloacetate%5D%7D%3D0.130mM)
![[NADH]=2.0\times 10^2mM](https://tex.z-dn.net/?f=%5BNADH%5D%3D2.0%5Ctimes%2010%5E2mM)
![\text{[Malate]}=1.37mM](https://tex.z-dn.net/?f=%5Ctext%7B%5BMalate%5D%7D%3D1.37mM)
![[NAD^+]=490mM](https://tex.z-dn.net/?f=%5BNAD%5E%2B%5D%3D490mM)
Putting values in above expression, we get:

Hence, the Gibbs free energy of the reaction is 21.32 kJ/mol