Answer:
The ratio of percent dissociation of the 1.59 M solution to the 0.186 M solution: 0.343 : 1.
Explanation:
![HAc\rightleftharpoons Ac^-+H^+](https://tex.z-dn.net/?f=HAc%5Crightleftharpoons%20Ac%5E-%2BH%5E%2B)
Initially c
At equilibrium c-cα cα cα
Dissociation constant of an acetic acid:
![K_a=1.8\times 10^{-5}](https://tex.z-dn.net/?f=K_a%3D1.8%5Ctimes%2010%5E%7B-5%7D)
Degree of dissociation = α
Dissociation constant of an acid is given by:
![K_a=\frac{c\alpha \times c\alpha }{c(1-\alpha )}=\frac{c\alpha ^2}{(1-\alpha )}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7Bc%5Calpha%20%5Ctimes%20c%5Calpha%20%7D%7Bc%281-%5Calpha%20%29%7D%3D%5Cfrac%7Bc%5Calpha%20%5E2%7D%7B%281-%5Calpha%20%29%7D)
1) Concentration of acid = c = [HAc] = 1.59 M
![1.8\times 10^{-5}=\frac{c\alpha ^2}{(1-\alpha )}](https://tex.z-dn.net/?f=1.8%5Ctimes%2010%5E%7B-5%7D%3D%5Cfrac%7Bc%5Calpha%20%5E2%7D%7B%281-%5Calpha%20%29%7D)
Degree of dissociation = α
![1.8\times 10^{-5}=\frac{1.59 M\alpha ^2}{(1-\alpha )}](https://tex.z-dn.net/?f=1.8%5Ctimes%2010%5E%7B-5%7D%3D%5Cfrac%7B1.59%20M%5Calpha%20%5E2%7D%7B%281-%5Calpha%20%29%7D)
![\alpha =0.003359](https://tex.z-dn.net/?f=%5Calpha%20%3D0.003359)
Percentage of dissociation = 0.3359%
2) Concentration of acid = c' = [HAc] = 0.186 M
![1.8\times 10^{-5}=\frac{c'(\alpha ')^2}{(1-\alpha ')}](https://tex.z-dn.net/?f=1.8%5Ctimes%2010%5E%7B-5%7D%3D%5Cfrac%7Bc%27%28%5Calpha%20%27%29%5E2%7D%7B%281-%5Calpha%20%27%29%7D)
Degree of dissociation = α'
![\alpha '=0.009789](https://tex.z-dn.net/?f=%5Calpha%20%27%3D0.009789%20)
Percentage of dissociation = 0.9789%
The ratio of percent dissociation of the 1.59 M solution to the 0.186 M solution:
![\frac{0.3359\%}{0.9789\%}=0.343](https://tex.z-dn.net/?f=%5Cfrac%7B0.3359%5C%25%7D%7B0.9789%5C%25%7D%3D0.343)