this question is in reference to the formation and naming of ionic compounds. Specifically, they want you to give examples of three ionic compounds with a metal to nonmetal ratio of 2 to 1. That means we need to have two metal atoms to metal ions, which are typically cat ions for every one non metal atom or an ion. In order for this to occur, we need to have the metal with half the charge of the nonmetal or the non metal with double the charge of the metal. So an example might be something like sodium sulfide. Sodium has one valence electron. It can give up sulfur needs to valence electrons in order to achieve an octet. So we need to. Sodium seems to give up one electron each to total so that sulfide can achieve an octet. Another one might be potassium oxide. Similar scenario. We've got potassium giving up one valence electron oxygen requiring too. So we need to potassium to supply the to valence electrons that oxygen needs to achieve an octet and lithium. Also in Group one A and alkali metal wants to give up just one valence electron to achieve an octet well to achieve, I guess a duet to be more like helium, and so it gives up one. If we have two of them, then we can provide the to valence electrons that sulfur needs. So this is sodium sulfide, potassium oxide and lithium sulfide. Remember when we name Ionic compounds? We named the Cat Ion with the name of the element and the anti on with the name of the Element, but with the ending oven of ID, a suffix of ID because each one of the cat ions donated their valence electrons to the anti on so the an ion could achieve an octet. Then all of the's will have an octet of valence electrons. Sulfur had six sodium had one. There were two of them, so we have a total of eight.
Answer:
V₂ = 106.5 mL
Explanation:
Given data:
Initial volume =200 mL
Initial pressure = 2 atm
Initial temperature = 35 °C (35 +273 = 308 K)
Final temperature = 55°C (55+273 = 328 K)
Final volume = ?
Final pressure = 4 atm
Formula:
P₁V₁/T₁ = P₂V₂/T₂
P₁ = Initial pressure
V₁ = Initial volume
T₁ = Initial temperature
P₂ = Final pressure
V₂ = Final volume
T₂ = Final temperature
Solution:
V₂ = P₁V₁ T₂/ T₁ P₂
V₂ = 2 atm ×200 mL × 328 K / 308 K ×4 atm
V₂ = 131200 atm .mL. K / 1232 K.atm
V₂ = 106.5 mL
Answer:
Spanish I dont know spanish.
Explanation:
Answer:
Bedrock is the hard, solid rock beneath surface materials such as soil and gravel.
Bedrock can be made of most types of rock, such as granite, limestone, or sandstone.
Hope this helps!
Answer:
D:2
Explanation:
H is hydrogen, and the subscript represents the amount of atoms it has so H2SO is two hydrogens