Answer:
378mL
Explanation:
The following data were obtained from the question:
Pressure (P) = 99.19 kPa
Temperature (T) = 28°C
Number of mole (n) = 0.015 mole
Volume (V) =...?
Next, we shall convert the pressure and temperature to appropriate units. This is illustrated below:
For Pressure:
101.325 KPa = 1 atm
Therefore, 99.19 kPa = 99.19/101.325 = 0.98 atm
For Temperature:
T(K) = T(°C) + 273
T(°C) = 28°C
T(K) = 28°C + 273 = 301K.
Next we shall determine the volume of N2. The volume of N2 can be obtained by using the ideal gas equation as shown below:
PV = nRT
Pressure (P) = 0.98 atm
Temperature (T) = 301K
Number of mole (n) = 0.015 mole
Gas constant (R) = 0.0821atm.L/Kmol.
Volume (V) =...?
0.98 x V = 0.015 x 0.0821 x 301
Divide both side by 0.98
V = (0.015 x 0.0821 x 301) /0.98
V = 0.378 L
Finally, we shall convert 0.378 L to millilitres (mL). This is illustrated below:
1L = 1000mL
Therefore, 0.378L = 0.378 x 1000 = 378mL
Therefore, the volume of N2 collected is 378mL
3.07g H2
27.4/26.98/2x3x1.01x2=3.07
Answer:
if a 40.0-gram sample of the gas occupies 11.2 liters of space at STP? A balloon is filled with 5 moles of helium gas.
Explanation:
Answer:
1,070.41 grams of DDT will be formed .Explanation:
1)
Moles of chlorobenzene =
According to reaction, 2 moles of chloro benzene reacts with 1 mole of chloral . Then 10.64 moles of chloro benzene will react with :
of chloral
2) Moles of chloral =
According to reaction, 1 moles of chloral reacts with 2 mole of chlorobenzene . Then 3.0915 moles of chloral will react with :
of chloro benzene
As we can see that chloral is in limiting amount and chloro benzene is in excessive amount. So, amount of DDT will depend upon amount of chloral.
According to reaction, 1 mole chloral gives 1 mole DDT.Then 3.0195 moles of chloral will give :
Mass of 3.0195 moles of DTT :
3.0195 mol × 354.5 g/mol = 1,070.41 g
1,070.41 grams of DDT will be formed .
Answer:
It is involved in the conversion of ADP to ATP
Explanation:
Most enzymes in biological systems function by reversible uptake and release of hydrogen in redox processes. The enzyme that catalyses the conversion of ADP to ATP also works by hydrogen ion transfer. Hence H+ is required in photosynthesis for the conversion of ADP to ATP