GDK is the nyc gng so 1.20L
Answer:
3.72 mol Hg
General Formulas and Concepts:
<u>Chemistry - Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
- Density = Mass over Volume
Explanation:
<u>Step 1: Define</u>
D = 13.6 g/mL
54.8 mL Hg
<u>Step 2: Identify Conversions</u>
Molar Mass of Hg - 200.59 g/mol
<u>Step 3: Find</u>
13.6 g/mL = x g / 54.8 mL
x = 745.28 g Hg
<u>Step 4: Convert</u>
<u />
= 3.71544 mol Hg
<u>Step 5: Check</u>
<em>We are given 3 sig figs. Follow sig fig rules and round.</em>
3.71544 mol Hg ≈ 3.72 mol Hg
Answer:
(B) 0.038 M
Explanation:
Kc = [H2][I2]/[HI]^2
Let the equilibrium concentration of H2 be y M
From the equation of reaction, mole ratio of H2 to I2 formed is 1:1, therefore equilibrium concentration of I2 is also y M
Also, from the equation of reaction, mole ratio of HI consumed to H2 formed is 2:1, therefore equilibrium concentration of HI is (1 - 2y) M
1.6×10^-3 = y×y/(1 - 2y)^2
y^2/1-4y+4y^2 = 0.0016
y^2 = 0.0016(1-4y+4y^2)
y^2 = 0.0016 - 0.0064y + 0.0064y^2
y^2-0.0064y^2+0.0064y-0.0016 = 0
0.9936y^2 + 0.0064y - 0.0016 = 0
The value of y must be positive and is obtained by using the quadratic formula
y = [-0.0064 + sqrt(0.0064^2 - 4×0.9936×-0.0016)] ÷ 2(0.9936) = 0.0736 ÷ 1.9872 = 0.038 M
Answer:
Radiation is being released from the reactor.
Explanation:
( A P E X )