I think the answer would be : Tetrahedral
Oxygen has 6 electrons and need 2 more electron to complete its octet. In Tetrahedral, the electrons are arranged so it surround the oxygen and forming a 109 degree bond angel/
hope this helps
Answer:
<h2>Oxygen has six valence electrons, two in the 2s subshell and four in the 2p subshell.</h2>
<h3>Valence electrons are the electrons in the outermost shell, or energy level, of an atom. </h3>
<h3>Configuration of oxygen's valence electrons as 2s²2p⁴.</h3>
Explanation:
#Let's Study
#I Hope It's Help
#Keep On Learning
#Carry On Learning

<u>Answer:</u> The freezing point of solution is 2.6°C
<u>Explanation:</u>
To calculate the depression in freezing point, we use the equation:

Or,

where,
= 
Freezing point of pure solution = 5.5°C
i = Vant hoff factor = 1 (For non-electrolytes)
= molal freezing point depression constant = 5.12 K/m = 5.12 °C/m
= Given mass of solute (anthracene) = 7.99 g
= Molar mass of solute (anthracene) = 178.23 g/mol
= Mass of solvent (benzene) = 79 g
Putting values in above equation, we get:

Hence, the freezing point of solution is 2.6°C
When you heat up most substances it gives them more Kinetic energy and the substance becomes less arranged in an ordered state, further apart and move faster. therefore the answer is the first: They gain a higher average kinetic energy
Hope that helps :)
Combustion is a chemical reaction between a fuel and an oxidant, oxygen, to give off combustion products and heat. Complete combustion results when all of the fuel is consumed to form carbon dioxide and water, as in the case of a hydrocarbon fuel. Incomplete combustion results when insufficient oxygen reacts with the fuel, forming soot and carbon monoxide.
The complete combustion of propane proceeds through the following reaction:

+

-->

+

Combustion is an exothermic reaction, which means that it gives off heat as the reaction proceeds. For the complete combustion of propane, the heat of combustion is (-)2220 kJ/mole, where the minus sign indicates that the reaction is exothermic.
The molar mass of propane is 44.1 grams/mole. Using this value, the number of moles propane to be burned can be determined from the mass of propane given. Afterwards, this number of moles is multiplied by the heat of combustion to give the total heat produced from the reaction of the given mass of propane.
14.50 kg propane x <u> 1000 g </u> x <u> 1 mole propane </u> x <u> 2220 kJ </u>
1 kg 44.1 g 1 mole
=
729,931.97 kJ