1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
oksano4ka [1.4K]
2 years ago
8

A subway has good service 70% of the time and runs less frequently 30% of the time because of signal problems. When there are si

gnal problems, the amount of time in minutes that you have to wait at the platform is described by the pdf probability density function with signal problems = pT|SP(t) = .1e −.1t But when there is good service, the amount of time you have to wait at the platform is probability density function with good service = pT|Good(t) = .3e −.3t You arrive at the subway platform and you do not know if the train has signal problems or is running with good service, so there is a 30% chance the train is having signal problems. (a) What is the probability that you wait at least 1 minute if there is good service? (b) What is the probability that you wait at least 1 minute if there are signal problems? (c) After 1 minute of waiting on the platform, you decide to re-calculate the probability that there are signal problems conditioning on the fact that your wait will be at least 1 minute long (since you have already waited 1 minute). What is that new probability? (d) After 5 minutes of waiting, still no train. You re-calculate again. What is the new probability?
Mathematics
1 answer:
nordsb [41]2 years ago
6 0

Answer:

Step-by-step explanation:

Let GS denote the good service and SP denote the signal problem.

A subway has good service 70% of the time, that is, P(GS)=0.7 and a subway runs less  frequently 30% of the time because of the signal problems, that is, P(SP)=0.3.

If there are signal problems, the amount of time T in minutes that have to wait at the  platform is described by the probability density function given below:

P_{T|SP}(t)=0.1e^{0.1t}

If there is good service, the amount of time T in minutes that have to wait at the platform  is described the probability density function given below:

P_{T|GOOD}(t)=0.3e^{0.3t}

(a)

The probability that you wait at least 1 minute if there is good service  P(T ≥ 1| GS) is obtained  as follows:

P(T\geq 1|GS)=\int\limits^{\infty}_1 {0.3e^{-0.3t}} \, dt\\\\=0.3\int\limits^{\infty}_1 {e^{-0.3t}} \, dt\\\\=0.3[(\frac{e^{-0.3t}}{-0.3})]\\\\=-(e^{-0.3t})\limits^{\infty}_1\\\\=-(0-e^{-0.3})\\=0.74

(b)

The probability that you wait at least 1 minute if there is signal problems  P(T ≥ 1| SP) is obtained  as follows:

P(T\geq 1|SP)=\int\limits^{\infty}_1 {0.1e^{-0.1t}} \, dt\\\\=0.1\int\limits^{\infty}_1 {e^{-0.1t}} \, dt\\\\=0.1[(\frac{e^{-0.1t}}{-0.3})]\\\\=-(e^{-0.1t})\limits^{\infty}_1\\\\=-(e^{\infty}-e^{-0.1})\\=-(0-0.904)\\=0.904

(c)

After 1 minute of waiting on the platform, the train is having signal problems follows an

exponential distribution with parameter \lambda= 0.1

The probability that the train is having signal problems based on the fact that will be at  least 1 minute long is obtained using the result given below:

P(SP|T\geq 1)=\frac{P(T\geq 1|SP)P(SP)}{P(T\geq 1)}

P(T\geq 1|GS)=0.74, P(T\geq 1|SP)=0.904

Now calculate the P(T \geq 1) as follows:

P(T \geq 1)=P(T\geq 1|SP)P(SP)+P(T\geq 1|GS)P(GS)\\=(0.904)(0.3)+(0.74)(0.7)=0.7892

The probability that the train is having signal problems based on the fact that will be at  least 1 minute long is calculated as follows:

P(SP|T\geq 1)= \frac{0.904 \times 0.3}{0.7892}
= 0.3436


Hence, the probability that the train is having signal problems based on the fact that will  be at least 1 minute long is 0.3436.

(d)

After 5 minutes of waiting on the platform, the train is having signal problems follows an  exponential distribution with parameter \lambda= 0.1.

The probability that the train is having signal problems based on the fact that will be at  least 5 minutes long is obtained using the result given below:

P(SP|T\geq 5)=\frac{P(T\geq 5|SP)P(SP)}{P(T\geq 5)}

First, calculate the P(T\geq 5|SP) as follows:

P(T\geq 5|SP)=\int\limits^{\infty}_5 {0.1e^{-0.1t}} \, dt\\\\=0.1\int\limits^{\infty}_5 {e^{-0.1t}} \, dt\\\\=0.1[(\frac{e^{-0.1t}}{-0.1})]\\\\=-(e^{-0.1t})\limits^{\infty}_5\\\\=-(e^{\infty}-e^{-0.5})\\=-(0-0.6065)\\=0.6065

Now, calculate the P (T\geq5|GS ) as follows:

P(T\geq 5|GS)=\int\limits^{\infty}_5 {0.3e^{-0.3t}} \, dt\\\\=0.3\int\limits^{\infty}_5 {e^{-0.3t}} \, dt\\\\=0.3[(\frac{e^{-0.3t}}{-0.3})]\\\\=-(e^{-0.3t})\limits^{\infty}_5\\\\=-(0-e^{-1.5})\\=0.2231

Now, calculate the P (T \geq 5) as follows:

P(T \geq 5)=P(T\geq 5|SP)P(SP)+P(T\geq 5|GS)P(GS)\\=(0.6065)(0.3)+(0.2231)(0.7)=0.3381

The probability that the train is having signal problems based on the fact that will be at  least 5 minutes long is calculated as follows:

P(SP|T\geq 5)= \frac{0.6065 \times 0.3}{0.3381}
= 0.5381


Hence, the probability that the train is having signal problems based on the fact that will  be at least 1 minute long is 0.5381.

You might be interested in
the table represents the cost of buying a small piece of land in a remote village since the year 1990
cricket20 [7]

Answer:Linear

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
The graph of a system of equations with the same slope and the same y-intercepts will have no solutions.
Rasek [7]
If 2 equations have the same y-intercept, they are overlapping, which means they have infinite solutions. So there is no way that 2 equations with the same y-intercept will have no solution. Thus your answer is: C)Never. 
4 0
3 years ago
Read 2 more answers
the distance between Columbus Ohio and New York City is about 560 miles how many hours would it take the train to travel between
arlik [135]
How fast is the train going??
7 0
3 years ago
Read 2 more answers
What's the area please
mezya [45]

Answer:

its area is square (11+17+4)

I guess this may help you

8 0
3 years ago
Read 2 more answers
The hypotenuse of a 45 -45 -90 triangle measures 128 cm what is the length of one leg of the triangle
erma4kov [3.2K]
This is an isosceles triangle. The definition of an isosceles triangle is a triangle with at least two congruent sides and angles. If 2 angles on a triangle are congruent (in this case 45 and 45 are two congruent angles) then triangle is isosceles. Therefore the two sides of triangle will be congruent. We know that the triangle is a right triangle because it has a hypotenuse. If a triangle has a hypotenuse then it's a right triangle. We can apply the Pythagorean theorem: a^2 + b^2 = c^2
A and B are the legs and C is the hypotenuse.
We can plug C in the equation:
a^2 + b^2 = 128
What do we know about the legs of the isosceles triangle? They are congruent so a and b have to be equal. From here it's simply guess and check. Will 8 work?
8^2 + 8^2 = 128
64 + 64 = 128
128=128
Yes the value 8 works so the length of two legs of the triangle is 8.
4 0
3 years ago
Read 2 more answers
Other questions:
  • What is the effect on the graph of the parent function f(x)=x when f(x) is replaced with f(x-7)
    6·1 answer
  • If vector u = (5, 3) and vector v = (-1, 4), what is the component form of vector u + v?
    9·1 answer
  • Find the length of AB
    10·1 answer
  • 3/8 to 7/8 percent of change?
    10·1 answer
  • The length of a rectangle is 4 yd longer than its width. If the perimeter of the rectangle is 48 yd, find its area.
    14·1 answer
  • The animal shelter has both male and female Labrador retrievers in yellow, brown, or black. There is and equal number of each ki
    6·1 answer
  • Select the graph of the quadratic function. f(x)=1/4x^2
    10·1 answer
  • Round 11,114 to the nearest thousand
    15·2 answers
  • Write the first five terms of each sequence. A geometric sequence with a common ratio of 3 and a first term of 1.​
    6·1 answer
  • Please help i need this done ASAP Il give brainliest and 20 Points
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!