The number of atoms present, on average, will be the natural abundance of the isotope times the number of atoms in the sample => number of C-13 atoms = C-13 abundance * number of atoms in the sample = 1.07% * 30,000 = 1.07 * 30,000 / 100 = 321 atoms.<span> Answer: 321 atoms.</span>
Answer:
See explanation
Explanation:
The molecular geometry of an atom is connected to the number of electron pairs that surround it(whether lone pairs or bonding pairs) as well as its hybridization state. We shall now examine the N, P, or S atoms in each of the following compounds.
a)
In H3PO4, P has a tetrahedral molecular geometry and is sp3 hybridized.
b) In NH4NO3
N is sp3 hybridized in NH4^+ and sp2 hybridized in NO3^-. Also, N is tetrahedral in NH4^+ but trigonal planar in NO3^-.
c) In S2Cl2, we expect a tetrahedral geometry but as a result of the presence of two lone pairs on each sulphur atom, the molecular geometry is bent. The sulphur is sp3 hybridized.
d) In K4[O3POPO3], each phosphorus atom is in a tetrahedral molecular geometry and is sp3 hybridized.
I believe it’s bacteria but your choice
The hydrate form of CuSO4 has 5 water molecules (CuSO4-5H20) copper (II) Sulfate pentahydrate or commonly known as blue vitriol.
To solve, the following molar masses are to be known.
CuSO4.5H2O (hydrate) - 249.7g/mole
CuSO4 (anhydrous) -159.6g/mole
Also there molar ratio of the hydrate and CuSO4 is 1.
the mass of the hydrate is to be divided by the molar mass of the hydrate then multiplied by the ratio (1) to get the moles of hydrate and multiplied by the molar mass of the anhydrous to get the mass in grams.
moles = (100g/249.7)*1 = 0.4 moles hydrate
grams = 0.4*159.6 = 64.9 grames hydrate