Answer:
54 g
Explanation:
1 mole of water = H2O
mass of 1 mole of H2O= mass of h2 + mass of o
= 2× mass of h +mass of o
= 2×1+16 =18 g
1 mole of water = 18g
3moles of water = 18×3g= 54g
Answer:
13 mol NO
Explanation:
Step 1: Write the balanced equation
4 NH₃(g) + 5 O₂(g) ⇒ 4 NO(g) + 6 H₂O(g)
Step 2: Establish the appropriate molar ratio
According to the balanced equation, the molar ratio of O₂ to NO is 5:4.
Step 3: Calculate the number of moles of O₂ needed to produce 16 moles of NO
We will use the previously established molar ratio.
16 mol O₂ × 4 mol NO/5 mol O₂ = 13 mol NO
Answer:
C. The half-life of C-14 is about 40,000 years.
Explanation:
The only false statement from the options is that the half-life of C-14 is 40,000yrs.
The half-life of an isotope is the time it takes for half of a radioactive material to decay to half of its original amount. C-14 has an half-life of 5730yrs. This implies that during every 5730yrs, C-14 will reduce to half of its initial amount.
- All living organisms contain both stable C-12 and the unstable isotope of C-14
- The lower the C-14 compared to the C-12 ratio in an organism, the older it is.
The answer for this is 26.6°c
Answer:
Total percent of magnesium in sample = 25.5%
Explanation:
Given:
Mass of magnesium = 24 gram
Mass of chlorine = 70 gram
Find:
Total percent of magnesium in sample = ?
Computation:
Total mass of sample = Mass of magnesium + Mass of chlorine
Total mass of sample = 24 gram + 70 gram
Total mass of sample = 94 gram
Total percent of magnesium in sample = [Mass of magnesium / Total mass of sample]100
Total percent of magnesium in sample = [24/94]100
Total percent of magnesium in sample = [0.255]100
Total percent of magnesium in sample = 25.5%