Answer: The bond formed between the elements will be ionic bond.
Explanation: We are given two elements having electronic configurations:
Element 1: 
Element 2: 
Element 1 can easily loose 1 electron to attain stable electronic configuration and Element 2 can accept 1 electron to attain stable electronic configuration.
For these elements, there will be a complete transfer of electron from Element 1 to Element 2. Hence, this will form a ionic bond.
From the configuration, Element 1 is Lithium and Element 2 is Fluoride. So, the compound is LiF.
Answer:
22.5 mL
Explanation:
We are given an amount of a fluid in a graduated cylinder and required to determine its volume.
Liquids always take the shape of the container they are placed in. In the graduated cylinder shown, note how the top of the fluid curves downwards. The volume of the liquid is usually determined at the bottom of this curve or what is called the meniscus.
The bottom of the meniscus is at the 22.5 mL level and thus the volume of the fluid is 22.5 mL
Can you take a screen shot im kind of lost on this
Answer:
pH change is -0.07
Explanation:
Using H-H equation for acetic acid:
pH = pKa + log [Acetate salt] / [Acetic acid]
Replacing:
pH = 4.74 + log[1.188M] / [1.188M]
pH = 4.74
The HCl reacts with sodium acetate producing acetic acid, thus:
HCl + CH₃COONa → CH₃COOH + NaCl
That means the final moles of sodium acetate are initial moles - moles of HCl and moles of acetic acid are initial moles + moles of HCl.
As the volume of the buffer is 1.0L, initial moles of both substances are 1.188moles. After reaction, the moles are:
sodium acetate: 1.188mol - 0.1mol = 1.088mol
Acetic acid: 1.188mol + 0.1mol = 1.288mol
Using again H-H equation:
pH = 4.74 + log[1.088M] / [1.288M]
pH = 4.67
pH change is: 4.67 - 4.74 = -0.07
She will most likely observe that the temperature
does not change during melting because the heat absorbed is used to overcome
intermolecular forces rather than to increase the kinetic energy of the
particles if she measures the temperature of the water in the beaker.