Answer:
D
Step-by-step explanation:
D is more appropriate for distance formula because you are looking for the whole length between two points rather than the point in between the the two points such as in the other answers.
9) We have: 23,15% × 35 = 8,1025 kg
There are 8,1025 kilograms of cashew nuts were there in the mixed nuts
10) We have:
- 25 × 64% = 16 mangoes
- 25× 16% = 4 avocados
Answer:
the length of the conjugate axis is 16
Step-by-step explanation:
We know that the general equation of a hyperbola with transverse horizontal axis has the form:
Where the point (h, k) are the coordinates of the center of the ellipse
2a is the length of the transverse horizontal axis
2b is the length of the conjugate axis
In this case the equation of the ellipse is:
Then
Finally the length of the conjugate axis is 16
7 < x. Here, you can solve the inequality by multiplying 2 by each quantity in the parentheses to get -18 < 24 - 6x. You can subtract -24 from both sides to get -42 < -6x. Then, you can divide each side by -6 and flip the inequality, and this leaves you with x > 7. You would check this answer by choosing a number greater than but close to 7, using the original equation.
No need to fear, thehotdogman93 is here!
The first step is to get rid of those very large numbers. It's going to be very difficult to factor unless we can bring those high numbers down. So lets see if we can factor each term.
So after dividing 49 with every single digit. The only number that divides evenly is 7 and one, and 16 isnt divisible evenly by 7 so that didn't work. Looks like we're gonna have to work with these big numbers.
There is something interesting though about these numbers. 16 and 49 are both perfect squares. 16 is the same as 4^2 and 49 is the same as 7^2. So we can factor the whole trinomial as:
If we were to expand this out as:
and multiply it back into the original form. It would match with the expression we started with. The 4's would multiply back into 16x^2 and the 7's would multiply back into 49.
Additionally 4 * -7 is -28, so you can combine two -28x's into the -56x term in the original trinomial.
Thus, the answer is yes you can, and the answer is: