Using the <u>normal distribution and the central limit theorem</u>, it is found that the interval that contains 99.44% of the sample means for male students is (3.4, 3.6).
In a normal distribution with mean and standard deviation , the z-score of a measure X is given by:
- It measures how many standard deviations the measure is from the mean.
- After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.
- By the Central Limit Theorem, the sampling distribution of sample means of size n has standard deviation .
In this problem:
- The mean is of .
- The standard deviation is of .
- Sample of 100, hence
The interval that contains 95.44% of the sample means for male students is <u>between Z = -2 and Z = 2</u>, as the subtraction of their p-values is 0.9544, hence:
Z = -2:
By the Central Limit Theorem
Z = 2:
The interval that contains 99.44% of the sample means for male students is (3.4, 3.6).
You can learn more about the <u>normal distribution and the central limit theorem</u> at brainly.com/question/24663213
Step-by-step explanation:
same side interior angles are formed when a transversal line intersects two or more lines
Answer:
Collect Like terms...Then Take the LCM
1/4x -1/3x +3 - 2
-1/12x + 1
Or
1 - 1/12x .
Option D.