P varies directly as the cube root of Q. If P = 4 when Q = 8, find P when Q = 64
2 answers:
Step-by-step explanation:
P varies directly as the cubic root of Q means that:
![p = x \times \sqrt[3]{q}](https://tex.z-dn.net/?f=p%20%3D%20x%20%5Ctimes%20%20%5Csqrt%5B3%5D%7Bq%7D%20)
, where x is a real constant number.
Which means that:
![x = \frac{p}{ \sqrt[3]{q} }](https://tex.z-dn.net/?f=x%20%3D%20%20%5Cfrac%7Bp%7D%7B%20%5Csqrt%5B3%5D%7Bq%7D%20%7D%20)
for q ≠0.
So we get that for q=8,p=4 which means:
![x = \frac{4}{ \sqrt[3]{8} } = \frac{4}{2} = 2](https://tex.z-dn.net/?f=x%20%3D%20%20%5Cfrac%7B4%7D%7B%20%5Csqrt%5B3%5D%7B8%7D%20%7D%20%20%3D%20%20%5Cfrac%7B4%7D%7B2%7D%20%20%3D%202)
As a result we get that for Q=64:
![p = 2 \times \sqrt[3]{64} = 2 \times 4 = 8 \\ since \: {4}^{3} = 4 \times 4 \times 4 = \\ 16 \times 4 = 64](https://tex.z-dn.net/?f=p%20%3D%202%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B64%7D%20%20%3D%202%20%5Ctimes%204%20%3D%208%20%5C%5C%20since%20%5C%3A%20%20%7B4%7D%5E%7B3%7D%20%20%3D%204%20%5Ctimes%204%20%5Ctimes%204%20%20%3D%20%20%5C%5C%20%2016%20%5Ctimes%204%20%3D%2064)
So for q=64,p=8.
Answer:
8
Step-by-step explanation:
If P varies directly with the cube root of Q, then there is a constant k such that:
![P=k\sqrt[3]{x}](https://tex.z-dn.net/?f=P%3Dk%5Csqrt%5B3%5D%7Bx%7D)
So we are given P=4 when Q=8. Plug this into find our constant, k.
![4=k \cdot \sqrt[3]{8}](https://tex.z-dn.net/?f=4%3Dk%20%5Ccdot%20%5Csqrt%5B3%5D%7B8%7D)

Divide both sides by 2:

So the equation no matter the P and the Q is:
![P=2 \cdot \sqrt[3]{x}](https://tex.z-dn.net/?f=P%3D2%20%5Ccdot%20%5Csqrt%5B3%5D%7Bx%7D)
What is P when Q=64?
![P=2 \cdot \sqrt[3]{64}](https://tex.z-dn.net/?f=P%3D2%20%5Ccdot%20%5Csqrt%5B3%5D%7B64%7D)


You might be interested in
Answer: 45x3x345!3
Step-by-step explanation:
you multiply all numbers then you divide by all the numbers there and there’s your answer
f = gmn/d²
gmn = fd²
m = fd²/gn
Answer:
air is nice
Step-by-step explanation:
heheh
Answer:
Wait what?
Step-by-step explanation:
3.9 is the estimated square root of 15 to one decimal place