Answer:
i think it is a but not shour
Step-by-step explanation:
Answer:
The answer is the third equation. A = 250*(1 +0.016)^(0.75)
Step-by-step explanation:
Since Javier deposited $250 into an account with annual interest rate, then as the years passes his account will grow in the manner shown below:
account(0) = 250
account(1) = account(0)*(1 + 1.6/100) = account(0)*(1 + 0.016) = account(0)*1.016
account(2) = account(1)*1.016 = account(0)*1.016*1.016 = account(0)*(1.016)²
account(3) = account(2)*1.016 = account(0)*(1.016)²*1.016 = account(0)*(1.016)³
account(n) = account(0)*(1.016)^n
Where n is the number of years, account(0) is the initial amount. In this case only 9 months have passed, so we need to convert this value to years, dividing it by 12, which is 9/12 = 0.75. The initial amount was 250, so the equation is:
A = 250*(1.016)^(0.75)
The answer is the third equation.
Answer:
answer is : Cos(13pi/8) = 0.3826
Step-by-step explanation:
We have, Cos (13pi/8)
Since 13pi/8 can be shown as 3pi/2 < 13pi/8 < 2pi
Hence 13pi/8 lies on fourth quadrant.
In fourth quadrant cosine will be positive.
Cos (13pi/8) = cos(3pi/2 + pi/8)
applying formula cos(A+B) = cos A cosB - sinAsinB
i.e Cos(3pi/2 + pi/8) = cos(3pi/2)cos(pi/8) - sin(3pi/2)sin(pi/8)
∵ Remember cos(3pi/2) =0 , sin(3pi/2) = -1
Cos(3pi/2 + pi/8) = 0 cos(pi/8) - (-1)sin(pi/8)
Cos(3pi/2 + pi/8) = 0 + 0.3826
Cos(3pi/2 + pi/8) = 0.3826
Hence we got Cos(13pi/8) = 0.3826
JfpeiJKFHGIFWjfowednklsv WEOIHGVFOEWDBISFKCJPFGVUOEIDSVB PIFGHFIAGHRKFNBLKGVBJ;ALKFBGO'klVFBFJSKDGPV;KFJDZNBAJGIJGJNVL;ZGJEORITUJLDNVZ;.JDFG[OAEJRGNA'JGBj'gaklrfmgo'ajgb'pzang'ajrebgmkza'pgjozn;klfdbgkl'fznkp'fgnko'lgkfv.
Here here here here here here here