Answer:
see explanation
Step-by-step explanation:
Using the tangent and sine ratios in the right triangle EFG
tan60° =
=
=
( multiply both sides by EG )
EG × tan60° = 28 ( divide both sides by tan60° )
EG =
≈ 16.2 in ( to the nearest tenth )
--------------------------------------------------------------
sin60° =
=
=
( multiply both sides by EF )
EF × sin60° = 28 ( divide both sides by sin60° )
EF =
≈ 32.3 in ( to the nearest tenth )
Answer:
(d) f(x) = -x²
Step-by-step explanation:
For the vertex of the quadratic function to be at the origin, both the x-term and the constant must be zero. That is, the function must be of the form ...
f(x) = a(x -h)² +k . . . . . . . . . . vertex form; vertex at (h, k)
f(x) = a(x -0)² +0 = ax² . . . . . vertex at the origin, (h, k) = (0, 0)
Of the offered answer choices, the only one with a vertex at the origin is ...
f(x) = -x² . . . . . a=-1
Step-by-step explanation:
Area of a circle = #r^2
1256 = 3.14 × r^2
r^2 = 1256/3.14
r^2 = 400
Square root of r = 20
Diameter = 2 × r = 2 × 20 = 40 inches
Answer:
what is the question then
Step-by-step explanation:
we have
![3x^{2} + 18x - 8 = 0](https://tex.z-dn.net/?f=%203x%5E%7B2%7D%20%2B%2018x%20-%208%20%3D%200%20%20)
Step ![1](https://tex.z-dn.net/?f=%201%20)
Move the constants to the right side
![3x^{2} + 18x = 8](https://tex.z-dn.net/?f=%203x%5E%7B2%7D%20%2B%2018x%20%3D%208%20%20)
Step ![2](https://tex.z-dn.net/?f=%202%20)
Factor 3 out of the variable terms
![3(x^{2} + 6x) = 8](https://tex.z-dn.net/?f=%203%28x%5E%7B2%7D%20%2B%206x%29%20%3D%208%20%20)
Step ![3](https://tex.z-dn.net/?f=%203%20)
Add
to both sides of the equation
![3(x^{2} + 6x+9) = 8+27](https://tex.z-dn.net/?f=%203%28x%5E%7B2%7D%20%2B%206x%2B9%29%20%3D%208%2B27%20%20)
![3(x^{2} + 6x+9) = 35](https://tex.z-dn.net/?f=%203%28x%5E%7B2%7D%20%2B%206x%2B9%29%20%3D%2035%20%20)
Step ![4](https://tex.z-dn.net/?f=%204%20)
Write the polynomial as a binomial squared
![3(x+3)^{2} = 35](https://tex.z-dn.net/?f=%203%28x%2B3%29%5E%7B2%7D%20%3D%2035%20%20)
therefore
the answer is
Factor 3 out of the variable terms.