Answer: (1) The resistance increases and the current decreases.
Explanation:
When the temperature of the filament increases, the vibrational energy of the constituent atoms increases which leads to increase in inter-atomic collision. Thus, the resistance would increase. The increases in resistance would obstruct the flow of charges more leading to decrease in the value of the current.
Hence, when the temperature of the filament increase, the resistance increases and current decreases.
To solve this problem it is necessary to apply the concepts related to the Force since Newton's second law, as well as the concept of Electromagnetic Force. The relationship of the two equations will allow us to find the magnetic field through the geometric relations of density and volume.

Where,
B = Magnetic Field
I = Current
L = Length
<em>Note:
is a direct adaptation of the vector relation
</em>
From Newton's second law we know that the relation of Strength and weight is determined as

Where,
m = Mass
g = Gravitational Acceleration
For there to be balance the two forces must be equal therefore

Our values are given as,
Diameter 
Radius 
Magnetic Field 
From the relationship of density another way of expressing mass would be

At the same time the volume ratio for a cylinder (the shape of the wire) would be

Replacing this two expression at our first equation we have that:



Re-arrange to find I


We have for definition that the Density of copper is
, gravity acceleration is
and the values of magnetic field (B) and the radius were previously given, then:


The current is too high to be transported which would make the case not feasible.
The initial speed of car A is 15.18 m/s.
Momentum is defined as mass in motion. If there are two objects (the two objects in motion or only one object in motion and the other in stationary) that collide and no other forces work in the system, the law of momentum conservation applies in the system.
p=p'
pa+pb = pa'+pb'
(ma×va) + (mb×vb) = (ma×va') + (mb×vb')
- ma = mass of object A (kg) = 1,783 kg
- mb = mass of object B (kg) = 1,600 kg
- va = speed of object A before collides (m/s)
- va' = speed of object A after collides (m/s) = 8 m/s
- vb = speed of object B before collides (m/s) = 0 m/s
- vb' = speed of object B after collides (m/s) = 8 m/s
- p = momentum before collision (Ns)
- p' = momentum after collision (Ns)
(ma×va) + (mb×vb) = (ma×va') + (mb×vb')
(1,783×va) + (1,600×0) = (1,783×8) + (1,600×8)
(1,783×va) + 0 = 14,264+12,800
(1,783×va) = 27,064

va = 15.18 m/s
Learn more about The law of momentum conservation here: brainly.com/question/7538238
#SPJ4
Certain games are creative you can learn how to work with a team and accept failure.
step by step explanation:
.
Longitud wave something like that.