Answer:
You are pulled towards that building. At the same time, that building is pulled towards you. Neither object creates enough gravitational force to really do anything. That is why you never notice any affect by either body, (you and a building).
Explanation:
You will surely get attracted towards the building.But it takes a lot of time depending on their masses.
This happens only when you are away from earth with that building.
Both of you will get attracted to it
if a third party with mass more than you or building is with you.
If it is on the earth.. Then the gravity between you and the building is negligible compared to the earth.Hence you will not get attracted towards the building in this case.
An
Explanation:
If you push Force is just a fancy word for pushing or pulling.
Answer:
velocity = 62.89 m/s in 58 degree measured from the x-axis
Explanation:
Relevant information:
Before the collision, asteroid A of mass 1,000 kg moved at 100 m/s, and asteroid B of mass 2,000 kg moved at 80 m/s.
Two asteroids moving with velocities collide at right angles and stick together. Asteroid A initially moving to right direction and asteroid B initially move in the upward direction.
Before collision Momentum of A = 1000 x 100 =
kg - m/s in the right direction.
Before collision Momentum of B = 2000 x 80 = 1.6 x
kg - m/s in upward direction.
Mass of System of after collision = 1000 + 2000 = 3000 kg
Now applying the Momentum Conservation, we get
Initial momentum in right direction = final momentum in right direction =
And, Initial momentum in upward direction = Final momentum in upward direction = 1.6 x
So,
=
m/s
and
m/s
Therefore, velocity is = 
= 
= 62.89 m/s
And direction is
tan θ =
= 1.6
therefore, 
=
from x-axis