Answer:
31.75 m/s
Explanation:
h = 41.7 m
Let the initial velocity of the second stone is u
Let the time taken to reach to the bottom by the first stone is t then the time taken by the second stone to reach the ground is t - 1.8.
For first stone:
Use second equation of motion

Here, u = 0, g = 9.8 m/s^2 and t be the time and h = 41.7
So, 41.7= 0 + 0.5 x 9.8 x t^2
41.7 = 4.9 t^2
t = 2.92 s ..... (1)
For second stone:
Use second equation of motion

Here, g = 9.8 m/s^2 and time taken is t - 1.8 = 2.92 - 1.8 = 1.12 s, h = 41.7 m and u be the initial velocity
.... (2)
By equation the equation (1) and (2), we get

u = 31.75 m/s
The mean may be calculated by summing the values of the refractive index and dividing the sum by the number of experiments. This is:
Mean = (1.45 + 1.56 + 1.54 + 1.44 + 1.54 + 1.53)/6
Mean = 1.51
The mean absolute error is the sum of the absolute values of errors divided by the number of trials:
MAE = (|1.45-1.51|+|1.56-1.51|+|1.54-1.51|+|1.44-1.51|+|1.54-1.51|+|1.53-1.51|)/6
MAE = 0.043
The fractional error is the MAE divided by the actual value:
Fractional error = 0.043 / 1.51
Fractional error = 43/1510
The percentage error is the fractional error multiplied by 100:
Percentage error = 2.85%
Answer:
15 m/s
Explanation:
Speed(m/s) = distance(m)/time(s)
distance = 216 km = 216,000 m
time = 4 hours = 14,400 s
speed = 216000/14400 = 15 m/s
Explanation:
The electric field at a distance r from the charged particle is given by :

k is electrostatic constant
if r = 2 m, electric field is given by :

If r = 1 m, electric field is given by :

Dividing equation (1) and (2) we get :

So, at a point 1 m from the particle, the electric field is 4 times of the electric field at a point 2 m.
Answer:
The generator produces electrical energy at a rate of 1378125000 J per second.
Explanation:
volume of water falling each second is 1250 
height through which it falls, h is 150 m
mass of 1
of water is 1000 kg
⇒mass of 1250
of water, m = 1250×1000 = 1250000 kg
acceleration due to gravity, g = 9.8 
in falling through 150 m in each second, by Work-Energy Theorem:
Kinetic Energy(KE) gained by it = Potential Energy(PE) lost by it
⇒KE = mgh
= 1250000×9.8×150 J
= 1837500000 J
Electrical Energy =
(KE)
=
×1837500000
= <u>1378125000 J per second</u>