Re-written, I believe the equation is:
(W+23)+5=W+(23+5)
With this, the parenthesis have nothing multiplying into it, so we can drop the parenthesis to get:
W+23+5=W+23+5
Which is the same thing.
So I'd assume it is the Associative property, because you are combining the like terms of 23 and 5.
Hope this helps!
There are 365 days in a year. So the answer is
1/365
Answer:
The calculated χ² = 0.57 does not fall in the critical region χ² ≥ 12.59 so we fail to reject the null hypothesis and conclude the proportion of fatal bicycle accidents in 2015 was the same for all days of the week.
Step-by-step explanation:
1) We set up our null and alternative hypothesis as
H0: proportion of fatal bicycle accidents in 2015 was the same for all days of the week
against the claim
Ha: proportion of fatal bicycle accidents in 2015 was not the same for all days of the week
2) the significance level alpha is set at 0.05
3) the test statistic under H0 is
χ²= ∑ (ni - npi)²/ npi
which has an approximate chi square distribution with ( n-1)=7-1= 6 d.f
4) The critical region is χ² ≥ χ² (0.05)6 = 12.59
5) Calculations:
χ²= ∑ (16- 14.28)²/14.28 + (12- 14.28)²/14.28 + (12- 14.28)²/14.28 + (13- 14.28)²/14.28 + (14- 14.28)²/14.28 + (15- 14.28)²/14.28 + (18- 14.28)²/14.28
χ²= 1/14.28 [ 2.938+ 5.1984 +5.1984+1.6384+0.0784 +1.6384+13.84]
χ²= 1/14.28[8.1364]
χ²= 0.569= 0.57
6) Conclusion:
The calculated χ² = 0.57 does not fall in the critical region χ² ≥ 12.59 so we fail to reject the null hypothesis and conclude the proportion of fatal bicycle accidents in 2015 was the same for all days of the week.
b.<u> It is r</u>easonable to conclude that the proportion of fatal bicycle accidents in 2015 was the same for all days of the week
25/3 ft/s is speed of the tip of his shadow moving when a man is 40 ft from the pole given that a street light is mounted at the top of a 15-ft-tall pole and the man is 6 ft tall who is walking away from the pole with a speed of 5 ft/s along a straight path. This can be obtained by considering this as a right angled triangle.
<h3>How fast is the tip of his shadow moving?</h3>
Let x be the length between man and the pole, y be the distance between the tip of the shadow and the pole.
Then y - x will be the length between the man and the tip of the shadow.
Since two triangles are similar, we can write

⇒15(y-x) = 6y
15 y - 15 x = 6y
9y = 15x
y = 15/9 x
y = 5/3 x
Differentiate both sides
dy/dt = 5/3 dx/dt
dy/dt is the speed of the tip of the shadow, dx/dt is the speed of the man.
Given that dx/dt = 5 ft/s
Thus dy/dt = (5/3)×5 ft/s
dy/dt = 25/3 ft/s
Hence 25/3 ft/s is speed of the tip of his shadow moving when a man is 40 ft from the pole given that a street light is mounted at the top of a 15-ft-tall pole and the man is 6 ft tall who is walking away from the pole with a speed of 5 ft/s along a straight path.
Learn more about similar triangles here:
brainly.com/question/8691470
#SPJ4
Answer:
The answer is 5 + 3x ≤ 50
Step-by-step explanation:
5 + 3x ≤ 50 - 5
3x ≤ 45
Divide by 3, x = 15