E and F are two events and that P(E)=0.3 and P(F|E)=0.5. Thus, P(E and F)=0.15
Bayes' theorem is transforming preceding probabilities into succeeding probabilities. It is based on the principle of conditional probability. Conditional probability is the possibility that an event will occur because it is dependent on another event.
P(F|E)=P(E and F)÷P(E)
It is given that P(E)=0.3,P(F|E)=0.5
Using Bayes' formula,
P(F|E)=P(E and F)÷P(E)
Rearranging the formula,
⇒P(E and F)=P(F|E)×P(E)
Substituting the given values in the formula, we get
⇒P(E and F)=0.5×0.3
⇒P(E and F)=0.15
∴The correct answer is 0.15.
If, E and F are two events and that P(E)=0.3 and P(F|E)=0.5. Thus, P(E and F)=0.15.
Learn more about Bayes' theorem on
brainly.com/question/17010130
#SPJ1
20+35+30= 1 hr&25 min so she should leave at 5:20
Answer:
$12.60
Step-by-step explanation:
6% of 210 is .06 x 210 which equals 12.60
Let
. The gradient of
at the point (1, 0, 0) is the normal vector to the surface, which is also orthogonal to the tangent plane at this point.
So the tangent plane has equation

Compute the gradient:

Evaluate the gradient at the given point:

Then the equation of the tangent plane is
