1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
katrin [286]
3 years ago
5

A 500 kg block is attached to a horizontal spring that is at its equilibrium length, and whose force constant is 30 N/m. The blo

ck rests on a frictionless surface. A 600 kg wad of putty is thrown horizontally at the block, hitting it with a speed of 4.4 m/s and sticking. How far does the putty-block system compress the spring?
Physics
1 answer:
m_a_m_a [10]3 years ago
7 0

Answer:

x = 0.396 m

Explanation:

The best way to solve this problem is to divide it into two parts: one for the clash of the putty with the block and another when the system (putty + block) compresses it is   spring

Data the putty has a mass m1 and velocity vo1, the block has a mass m2 .  t's start using the moment to find the system speed.

Let's form a system consisting of putty and block; For this system the forces during the crash are internal and the moment is preserved. Let's write the moment before the crash

    p₀ = m1 v₀₁

Moment after shock

    p_{f} = (m1 + m2) v_{f}

   p₀ = p_{f}

   m1 v₀₁ = (m1 + m2) v_{f}

  v_{f} = v₀₁ m1 / (m1 + m2)

   v_{f}= 4.4 600 / (600 + 500)

  v_{f} = 2.4 m / s

With this speed the putty + block system compresses the spring, let's use energy conservation for this second part, write the mechanical energy before and after compressing the spring

Before compressing the spring

   Em₀ = K = ½ (m1 + m2) v_{f}²

After compressing the spring

   E_{mf} = Ke = ½ k x²

As there is no rubbing the energy is conserved

   Em₀ = E_{mf}

   ½ (m1 + m2) v_{f}² = = ½ k x²

   x = v_{f} √ (k / (m1 + m2))

   x = 2.4 √ (11/3000)

   x = 0.396 m

You might be interested in
In one experiment, the students allow the block to oscillate after stretching the spring a distance A. If the potential energy s
atroni [7]

Answer:

    K = m g (A - A2)

Explanation:

In a block spring system the total energy is the sum of the potential energy plus the kinetic energy, for maximum elongation all the energy is potential

         Em = U₀ = m g A

For when the system is at an ele

Elongation A2 less than A, energy has two parts

        Em = K + U₂

       K = Em –U₂

We substitute

     K = m g A - m gA2

    K = m g (A - A2)

3 0
3 years ago
Read 2 more answers
A string under a tension of 50.4 N is used to whirl a rock in a horizontal circle of radius 2.51 m at a speed of 21.1 m/s. The s
Leokris [45]

Answer:

619.8 N

Explanation:

The tension in the string provides the centripetal force that keeps the rock in circular motion, so we can write:

T=m\frac{v^2}{r}

where

T is the tension

m is the mass of the rock

v is the speed

r is the radius of the circular path

At the beginning,

T = 50.4 N

v = 21.1 m/s

r = 2.51 m

So we can use the equation to find the mass of the rock:

m=\frac{Tr}{v^2}=\frac{(50.4)(2.51)}{21.1^2}=0.284 kg

Later, the radius of the string is decreased to

r' = 1.22 m

While the speed is increased to

v' = 51.6 m/s

Substituting these new data into the equation, we find the tension at which the string breaks:

T'=m\frac{v'^2}{r'}=(0.284)\frac{(51.6)^2}{1.22}=619.8 N

5 0
3 years ago
It is essential to behave appropriately on social media and be _______ when you post anything.
Firdavs [7]

Answer:

I would say be Mindful.

Explanation:

There could be like a MILLION answers for this. I think that you should personally go with your gut. That would be the best option. I think it's mindful because you really do have to be mindful when you post. Like not posting too much, not posting stuff you're uncomfortable with, not posting when on vacation, etc. So, I think you should be mindful.

5 0
2 years ago
A horizontal 2.00\ m2.00 m long, 5.00\ kg5.00 kg uniform beam that lies along the east-west direction is acted on by two forces.
Sunny_sXe [5.5K]

Answer: 240\ rad/s^2

Explanation:

Given

Length of beam l=2\ m

mass of beam m=5\ kg

Two forces of equal intensity acted in the opposite direction, therefore, they create a torque of magnitude

\tau =F\times l=200\times 2=400\ N.m

Also, the beam starts rotating about its center

So, the moment of inertia of the beam is

I=\dfrac{ml^2}{12}=\dfrac{5\times 2^2}{12}\\\\I=\dfrac{5}{3}\ kg.m^2

Torque is the product of moment of inertia and angular acceleration

\Rightarrow \tau=I\alpha\\\\\Rightarrow 400=\dfrac{5}{3}\times \alpha\\\\\Rightarrow \alpha =240\ rad/s^2

7 0
3 years ago
TRUE/FALSE: Water balance is the balance between water intake and water excretion?
Alex787 [66]

True, because water balance is the balance between intake and output

6 0
3 years ago
Other questions:
  • Lisa has three classes that each last 50 minutes qhat ia the total nuber of minutes of minutes of the three classe?
    7·2 answers
  • The drawing shows an electron entering the lower left side of a parallel plate capacitor and exiting at the upper right side. Th
    9·1 answer
  • It's nighttime, and you've dropped your goggles into a 3.2-m-deep swimming pool. If you hold a laser pointer 1.2 m above the edg
    9·1 answer
  • What factor account for the change of viscosity in fluid
    6·1 answer
  • Can someone help with numbers 5-8??
    13·1 answer
  • In ionic bonds what happens to electrons?
    12·2 answers
  • A velocity selector consists of a uniform electric field of 3.4*10^6 V/m and a uniform magnetic field of 42.0 mT, perpendicular
    15·1 answer
  • Identify at least two ways in which heavy rain can affect the efficiency of
    6·1 answer
  • Which planet in our solar system, discovered in 1781, was named after the greek god of the sky?.
    10·1 answer
  • Find the wavelength of the third line in the lyman series, and identify the type of em radiation.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!