1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Serga [27]
3 years ago
11

5) A 20.0 kg cart with no friction wheels sits on a table. A light string is attached to it and runs over a low friction pulley

to a 0.0150 kg mass.
Draw a free body diagram showing all the forces acting on each object
Calculate the acceleration of the masses
Calculate the tension force in the cord
How long will it take the block to get to go 1.2 m to the edge of the table.
What will the velocity be as soon as it gets to the edge?
Physics
2 answers:
ella [17]3 years ago
7 0

Answer:

1) Please find attached, created with Microsoft Visio

2) The acceleration of the masses connected by the light string is 0.00735 m/s²

3) The tension in the cord is 0.147 N

4) The time it would take the block to go 1.2 m to the edge of the table is approximately 18.07 s

5) The velocity of the cart as soon as it gets to the edge of the table is 0.042 m/s

Explanation:

1) Please find attached, the required free body diagram, showing the tension, weight and frictional (zero friction) forces acting on the cart and the mass created with Microsoft Visio

2) The acceleration of the masses connected by the light string is given as follows;

F = Mass, m × Acceleration, a

The mass of the truck, M = 20.0 kg

The mass attached to the string, hanging rom the pulley, m = 0.0150 kg

The force, F acting on the system = The pulling force on the cart = The tension on the cable = The weight of the hanging mass = 0.0150 × 9.8 = 0.147 N

The pulling force acting on the cart, F = M × a

∴ F = 0.147 N = 20.0 kg × a

a = 0.147 N/(20.0 kg) = 0.00735 m/s²

The acceleration of the truck = a = 0.00735 m/s²

3) The tension in the cord = F = 0.147 N

4) The time, t, it would take the block to go 1.2 m to the edge of the table is given by the kinematic equation, s = u·t + 1/2·a·t²

Where;

s = The distance to the edge of the table = 1.2 m

u = The initial velocity = 0 m/s (The cart is assumed to be initially at rest)

a = The acceleration of the cart = 0.00735 m/s²

t = The time taken

Substituting the known values, gives;

s = u·t + 1/2·a·t²

1.2 = 0 × t + 1/2 ×0.00735 × t²

1.2 = 1/2 ×0.00735 × t²

t² = 1.2/(1/2 ×0.00735) ≈ 326.5306

t = √(1.2/(1/2 ×0.00735)) ≈ 18.07

The time it would take the block to go 1.2 m to the edge of the table = t ≈ 18.07 s

5) The velocity, v, of the cart as soon as it gets to the edge of the table is given by the kinematic equation, v² = u² + 2·a·s as follows;

v² = u² + 2·a·s

u = 0 m/s

v² = 0² + 2 × 0.00735 × 1.2 = 0.001764

v = √(0.001764) = 0.042

The velocity of the cart as soon as it gets to the edge of the table = v = 0.042 m/s.

BARSIC [14]3 years ago
4 0

Answer:

There's no answer I'm just taking points like you did me,  so thank you for your points I'll put them to good use ;)

You might be interested in
The cabinet is mounted on coasters and has a mass of 45 kg. The casters are locked to prevent the tires from rotating. The coeff
stira [4]

Answer:

the force P required for impending motion is 132.3 N

the largest value of "h" allowed if the cabinet is not to tip over is 0.8 m

Explanation:

Given that:

mass of the cabinet  m = 45 kg

coefficient of static friction μ =  0.30

A free flow body diagram illustrating what the question represents is attached in the file below;

The given condition from the question let us realize that ; the casters are locked to prevent the tires from rotating.

Thus; considering the forces along the vertical axis ; we have :

\sum f_y =0

The upward force and the downward force is :

N_A+N_B = mg

where;

\mathbf { N_A  \ and  \ N_B} are the normal contact force at center point A and B respectively .

N_A+N_B = 45*9.8

N_A+N_B = 441    ------- equation (1)

Considering the forces on the horizontal axis:

\sum f_x = 0

F_A +F_B  = P

where ;

\mathbf{ F_A \ and \ F_B } are the static friction at center point A and B respectively.

which can be written also as:

\mu_s N_A + \mu_s N_B  = P

\mu_s( N_A +  N_B)  = P

replacing our value from equation (1)

P = 0.30 ( 441)    

P = 132.3 N

Thus; the force P required for impending motion is 132.3 N

b) Since the horizontal distance between the casters A and B is 480 mm; Then half the distance = 480 mm/2 = 240 mm = 0.24 cm

the largest value of "h" allowed for  the cabinet is not to tip over is calculated by determining the limiting condition  of the unbalanced torque whose effect is canceled by the normal reaction at N_A and it is shifted to N_B:  

Then:

\sum M _B = 0

P*h = mg*0.24

h =\frac{45*9.8*0.24}{132.3}

h = 0.8 m

Thus; the largest value of "h" allowed if the cabinet is not to tip over is 0.8 m

6 0
3 years ago
A 15-watt bulb is connected to a circuit that has a total of 60. Ω of resistance. How many electrons are passing through that bu
Mariulka [41]

Answer:

3.2075*10^16

Explanation:

Q=P/V just search up a converter and youll get 30V and so you do 15/30 which is a half and a single coulomb is 6.415*10^16 so you half it. I belive this is correct if you dont belive me wait for someone else smarter to answer and compare.

3 0
2 years ago
An ice cube of mass 50.0 g can slide without friction up and down a 25.0 degree slope. The ice cube is pressed against a spring
lozanna [386]

Answer:

0.6 m

Explanation:

When a spring is compressed it stores potential energy. This energy is:

Ep = 1/2 * k * x^2

Being x the distance it compressed/stretched.

When the spring bounces the ice cube back it will transfer that energy to the cube, it will raise up the slope, reaching a high point where it will have a speed of zero and a potential energy equal to what the spring gave it.

The potential energy of the ice cube is:

Ep = m * g * h

This is vertical height and is related to the distance up the slope by:

sin(a) = h/d

h = sin(a) * d

Replacing:

Ep = m * g * sin(a) * d

Equating both potential energies:

1/2 * k * x^2 = m * g * sin(a) * d

d = (1/2 * k * x^2) / (m * g * sin(a))

d= (1/2 * 25 * 0.1^2) / (0.05 * 9.81 * sin(25)) = 0.6 m

8 0
3 years ago
A 65-kg ice skater stands facing a wall with his arms bent and then pushes away from the wall by straightening his arms. At the
Marrrta [24]

Our values can be defined like this,

m = 65kg

v = 3.5m / s

d = 0.55m

The problem can be solved for part A, through the Work Theorem that says the following,

W = \Delta KE

Where

KE = Kinetic energy,

Given things like that and replacing we have that the work is given by

W = Fd

and kinetic energy by

\frac {1} {2} mv ^ 2

So,

Fd = \frac {1} {2} m ^ 2

Clearing F,

F = \frac {mv ^ 2} {2d}

Replacing the values

F = \frac {(65) (3.5)} {2 * 0.55}

F = 723.9N

B) The work done by the wall is zero since there was no displacement of the wall, that is d = 0.

6 0
2 years ago
Joey is riding in an elevator which is accelerating upwards at 2.0 m/s2. The elevator weighs 300.0 kg, and Joey weighs 60.0 kg.
vodka [1.7K]

4200 N  is the tension in the cable that pulls the elevator upwards.

The correct option is A.

<h3>What does tension ?</h3>

Tension is the force that is sent through a rope, thread, or wire whenever two opposing forces pull on it. Along the whole length of the wire, the tensile stress pulls equally on all objects at the ends. Every physical object that comes into contact with that other one exerts force on it.

<h3>Briefing:</h3>

We employ the following formula to determine the cable's tension.

Formula:

T = mg+ma............ Equation 1

Where:

T is the cable's tension.

M = Mass of the elevator and the Joey

Accelerating with a

g = Gravitational acceleration

Considering the query,

Given:

m = (300+60) = 360 kg

a = 2 m/s²

g = 9.8 m/s²

Substitute these values into equation 2

T = (360×9.8)+(360×2)

T = 3528+720

T = 4248 N

T ≈ 4200 to the nearest hundred.

To know more about Tension visit:

brainly.com/question/14177858

#SPJ1

7 0
1 year ago
Other questions:
  • A fisherman fishing from a pier observes that the float on his line bobs up and down, taking 2.4 s to move from its highest poin
    13·1 answer
  • A 1.5-m length of straight wire experiences a maximum force of 1.6 N when in a uniform magnetic field that is 1.8 T. 1) What cur
    10·1 answer
  • I stretch a rubber band and "plunk" it to make it vibrate in its fundamental frequency. I then stretch it to twice its length an
    9·1 answer
  • A heat engine has a maximum possible efficiency of 0.780. If it operates between a deep lake with a constant temperature of-24.8
    13·1 answer
  • A small ball is attached to one end of a massless, rigid rod. The ball and the rod revolve in a horizontal circle with the other
    7·1 answer
  • A vertical cylinder with a heavy piston contains air at 300 K. The initial pressure is 2.0 x 105 Pa and the initial volume is 0.
    9·1 answer
  • How is reflection used in the process of finding the speed of a vehicle?
    14·1 answer
  • A red laser with a wavelength of 670 nm and a blue laser with a wavelength of 450 nm emit laser beams with the same light power.
    7·1 answer
  • Revolution: One orit of an object in space around another_ days?​
    6·2 answers
  • Describe the differences between the energy, spacing, andmovement of molecules in a solid, a liquid, and a gas.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!