Answer:
letter C. The mass of the object.
Explanation:
i hope it helps.
Answer:
R2 = 10.31Ω
Explanation:
For two resistors in parallel you have that the equivalent resistance is:
(1)
R1 = 13 Ω
R2 = ?
The equivalent resistance of the circuit can also be calculated by using the Ohm's law:
(2)
V: emf source voltage = 23 V
I: current = 4 A
You calculate the Req by using the equation (2):

Now, you can calculate the unknown resistor R2 by using the equation (1):

hence, the resistance of the unknown resistor is 10.31Ω
Answer:
1) The force Christian can exert on his bicycle before picking up the the cargo is 529.74 N
2) The force Christian can exert on his bicycle after picking up the the cargo is 647.46 N
Therefore, Christian has to exert more force on his bike after picking up the cargo
Explanation:
The given parameters are;
The mass of Christian and his bicycle = 54 kg
The mass of the cargo = 12 kg
1) The force Christian can exert on his bicycle before picking up the the cargo = Mass of Christian and his bicycle × Acceleration due to gravity
∴ The force Christian can exert on his bicycle before picking up the the cargo = 54 kg × 9.81 m/s² = 529.74 N
2) The force Christian can exert on his bicycle after picking up the the cargo = (54 + 12) kg × 9.81 m/s² = 647.46 N
Therefore, Christian has to exert more force on his bike after picking up the cargo.
Answer:
Approximately 0.0898 W/m².
Explanation:
The intensity of light measures the power that the light delivers per unit area.
The source in this question delivers a constant power of
. If the source here is a point source, that
of power will be spread out evenly over a spherical surface that is centered at the point source. In this case, the radius of the surface will be 9.6 meters.
The surface area of a sphere of radius
is equal to
. For the imaginary 9.6-meter sphere here, the surface area will be:
.
That
power is spread out evenly over this 9.6-meter sphere. The power delivered per unit area will be:
.
Answer:

Explanation:
The net force exerted on the mass is the sum of tension force and the external force of gravity.

is the tension force.
is the force of gravity.

where
is the rope's radius from the fixed point.
From the net force equation above:

Hence the tension force is 6.046N